Skip to main content
Log in

Photosensitized mefloquine induces ROS-mediated DNA damage and apoptosis in keratinocytes under ambient UVB and sunlight exposure

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The present study illustrates the photosensitizing behavior of mefloquine (MQ) in human skin keratinocytes under ambient doses of UVB and sunlight exposure. Photochemically, MQ generated reactive oxygen species superoxide radical, hydroxyl radical, and singlet oxygen through type I and type II photodynamic reactions, respectively, which caused photooxidative damage to DNA and formed localized DNA lesions cyclobutane pyrimidine dimers. Photosensitized MQ reduced the viability of keratinocytes to 25 %. Significant level of intracellular reactive oxygen species (ROS) generation was estimated through fluorescence probe DCF-H2. Increased apoptotic cells were evident through AO/EB staining and phosphatidyl serine translocation in cell membrane. Single-stranded DNA damage was marked through single-cell gel electrophoresis. Mitochondrial membrane depolarization and lysosomal destabilization were evident. Upregulation of Bax and p21 and downregulation of Bcl-2 genes and corresponding protein levels supported apoptotic cell death of keratinocyte cells. Cyclobutane pyrimidine dimers (CPDs) were confirmed through immunofluorescence. In addition, hallmarks of apoptosis and G2/M phase cell cycle arrest were confirmed through flow cytometry analysis. Our findings suggest that MQ may damage DNA and produce DNA lesions which may induce differential biological responses in the skin on brief exposure to UVB and sunlight.

Mefloquine is photosensitized by UVB and sunlight exposure at an appropriate dose and generates ROS involving both type I and type II photosensitization mechanisms. These ROS primarily damage DNA, cell membrane, and membrane-bound organelles. MQ differentially affects various biological processes which end into apoptosis of the cell

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali D, Verma A, Mujtaba SF, Dwivedi A, Hans RK, Ray RS. UV-B induced apoptosis and DNA damaging potential of chrysene via reactive oxygen species in human keratinocytes. Toxicol Lett. 2011;204:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Aloisi GG, Barbafina A, Canton M, Acqua FD, Elisei F, Facciolo L, et al. Photophysical and photobiological behavior of antimalarial drugs in aqueous solutions. Photochem Photobiol. 2004;79(3):248–58.

    Article  PubMed  CAS  Google Scholar 

  • Aloisi GG, Amelia M, Barbafina A, Latterini L, Elisei F, Acqua FD, et al. Photochem Photobiol. 2007;83(3):664–74.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. Photochem Photobiol B. 2001;63:8–18.

    Article  CAS  Google Scholar 

  • Boya P, Gonzalez-Polo R, Poncet D, Andreau K, Vieira HL, Roumier T, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003;22:3927–36.

    Article  PubMed  CAS  Google Scholar 

  • Brickelmaier M, Lugovskoy A, Kartikeyan R, Reviriego-Mendoza MM, Allaire N, Simon K, et al. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob Agents Chemother. 2009;53(5):1840–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bruls WA, Weelden HV, van der Leun JC. Transmission of UV-radiation through human epidermal layers as a factor influencing the minimal erythema dose. Photochem Photobiol. 1984;39:63–7.

    Article  PubMed  CAS  Google Scholar 

  • Cadet J, Mouret S, Ravanat JL, Douki T. Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol. 2012;88(5):1048–65.

    Article  PubMed  CAS  Google Scholar 

  • Chen MK, Tsai YC, Li PY, Liau CC, Taniga ES, Chang DW, et al. Delay of gap filling during nucleotide excision repair by base excision repair: the concept of competition exemplified by the effect of propolis. Toxicol Sci. 2011;122(2):339–48.

    Article  PubMed  CAS  Google Scholar 

  • Chignell CF, Sik RH. A photochemical study of cells loaded with 2′, 7′-dichlorofluorescin: implications for the detection of reactive oxygen species generated during UVA irradiation. Free Radic Biol Med. 2003;34(8):1029–34.

    Article  PubMed  CAS  Google Scholar 

  • Davids LM, Kleemann B. The menace of melanoma: a photodynamic approach to adjunctive cancer therapy. In: Duc, G. H. T., eds. Melanoma—from early detection to treatment. In tech; 2013: 583-628.

  • Gofton TE, Al-Khotani A, O’Farrell B, Ang LC, McLachlan RS. Mefloquine in the treatment of progressive multifocal leukoencephalopathy. J Neurol Neurosurg Psychiatry. 2011;82(4):452–5.

    Article  PubMed  CAS  Google Scholar 

  • Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. 2004;23:2881–90.

    Article  PubMed  CAS  Google Scholar 

  • Haywood R, Andrady C, Kassouf N, Sheppard N. Intensity-dependent direct solar radiation and UVA-induced radical damage to human skin and DNA, lipids and proteins. Photochem Photobiol. 2011;87:117–30.

    Article  PubMed  CAS  Google Scholar 

  • Henery S, George T, Hall B, Basiji D, William O, Morrissey P. Quantitative image based apoptotic index measurement using multispectral imaging flow cytometry: a comparison with standard photometric methods. Apoptosis. 2008;13:1054–63.

    Article  PubMed  Google Scholar 

  • Hsin-Lung L, Satoshi N, Lisa M, Barbara W, Akira Y, Douglas WE, et al. Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest. BMC Cancer. 2005;5:135.

    Article  Google Scholar 

  • Johansson A, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane Permeabilization. Apoptosis. 2010;15:527–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96:729–46.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen S, Orsteen A, Sande SA, Tønnesen HH. Photoreactivity of biologically active compounds VII. Interaction of antimalarial drugs with melanin in vitro as part of phototoxicity screening. Photochem Photobiol. 1994;26(1):87–95.

    Article  CAS  Google Scholar 

  • Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003;278:33714–23.

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the (2ΔΔCT) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba SF, Dwivedi A, Yadav N, Ray RS, Singh G. Singlet oxygen mediated apoptosis by Anthrone involving lysosomes and mitochondria at ambient UV- radiation. Hazard Mater. 2013;252–253:258–71.

    Article  Google Scholar 

  • Nys K, Agostinis P. Bcl-2 family members: essential players in skin cancer. Cancer Lett. 2012;320(1):1–1.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS. Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med. 2011;51:824–33.

    Article  PubMed  CAS  Google Scholar 

  • Paris C, Bertoglio J, Bréard J. Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells. Apoptosis. 2007;12:1257–67.

    Article  PubMed  CAS  Google Scholar 

  • Petersen AB, Gniadecki R, Vicanova J, Thorn T, Wulf HC. Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. Photochem Photobiol B Biol. 2000;59(1–3):123–31.

    Article  CAS  Google Scholar 

  • Petrocelli T, Slingerland J. UVB induced cell cycle checkpoints in an early stage human melanoma line, WM35. Oncogene. 2000;19:4480–90.

    Article  PubMed  CAS  Google Scholar 

  • Ravanat J, Mascio PD, Martinez GR, Medeiros MHG, Cadet J. Singlet oxygen induces oxidation of cellular DNA. J Biol Chem. 2000;275(51):40601–4.

    Article  PubMed  CAS  Google Scholar 

  • Redmond RW, Kochevar IE. Spatially-resolved cellular responses to singlet oxygen. Photochem Photobiol. 2006;82:1178–86.

    Article  PubMed  CAS  Google Scholar 

  • Repnika U, Boris T. Lysosomal–mitochondrial cross-talk during cell death. Mitochondrion. 2010;10(6):662–9.

    Article  Google Scholar 

  • Ryter SW, Tyrrell RM. Singlet molecular oxygen (1O2): a possible effector of eukaryotic gene expression. Free Radic Biol Med. 1998;24(9):1520–34.

    Article  PubMed  CAS  Google Scholar 

  • Sheen J, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell. 2011;19:613–28.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM. Oxidative stress in diseases of the human cornea. Free Radic Biol Med. 2008;45:1047–55.

    Article  PubMed  CAS  Google Scholar 

  • Suen D, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22:1577–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Valencia A, Kochevar IE. Ultraviolet A induces apoptosis via reactive oxygen species in a model for Smith–Lemli–Opitz syndrome. Free Radic Biol Med. 2006;40:641–50.

    Article  PubMed  CAS  Google Scholar 

  • Wischermann K, Popp S, Moshir S, Scharfetter-Kochanek K, Wlaschek M, de Gruijl F, et al. UVA radiation causes DNA strand breaks, chromosomal aberrations and tumorigenic transformation in HaCaT skin keratinocytes. Oncogene. 2008;27:4269–80.

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Chiu S, Oleinick NL. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene. 2001;20:3420–7.

    Article  PubMed  CAS  Google Scholar 

  • Yadav N, Dwivedi A, Mujtaba SF, Kushwaha HN, Singh SK, Ray RS. Ambient UVA-induced expression of p53 and apoptosis in human skin melanoma A375 cell line by Quinine. Photochem Photobiol. 2013;89:655–64.

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Zhang G. Lysosomal destabilization via increased potassium ion permeability following photodamage. Biochim Biophys Acta. 1997;1323:334–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director CSIR-IITR for his valuable support in this study.

Funding

This work is supported by University Grants Commission (UGC) and CSIR network project, UNDO (BSC 0103), New Delhi, India.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan Singh Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Dwivedi, A., Mujtaba, S.F. et al. Photosensitized mefloquine induces ROS-mediated DNA damage and apoptosis in keratinocytes under ambient UVB and sunlight exposure. Cell Biol Toxicol 30, 253–268 (2014). https://doi.org/10.1007/s10565-014-9280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9280-7

Keywords

Navigation