Skip to main content

Advertisement

Log in

Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Tributyltin-chloride, a well-known organotin compound, is a widespread environmental toxicant. The immunotoxic effects of tributyltin-chloride on mammalian system and its mechanism is still unclear. This study is designed to explore the mode of action of tributyltin-induced apoptosis and other parallel apoptotic pathways in murine thymocytes. The earliest response in oxidative stress followed by mitochondrial membrane depolarization and caspase-3 activation has been observed. Pre-treatment with N-acetyl cysteine and buthionine sulfoximine effectively inhibited the tributyltin-induced apoptotic DNA and elevated the sub G1 population, respectively. Caspase inhibitors pretreatment prevent tributyltin-induced apoptosis. Western blot and flow cytometry indicate no translocation of apoptosis-inducing factor and endonuclease G in the nuclear fraction from mitochondria. Intracellular Ca2+ levels are significantly raised by tributyltin chloride. These results clearly demonstrate caspase-dependent apoptotic pathway and support the role of oxidative stress, mitochondrial membrane depolarization, caspase-3 activation, and calcium during tributyltin-chloride (TBTC)-induced thymic apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aluoch AO, Odman-Ghazi SO, Whalen MM. Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicol. 2006;224:229–37.

    Article  CAS  Google Scholar 

  • Bai J, Rodriguez AM, Malendez JA, Cederbaum AI. Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J Biol Chem. 1999;274:26217–24.

    Article  PubMed  CAS  Google Scholar 

  • Baken KA, Arkusz J, Pennings J, Vandebriel LA, Van Loveren H. In vitro immunotoxicity of bis(tri-n-butyltin)oxide (TBTO) studied by toxicogenomics. Toxicol. 2007;237:35–48.

    Article  CAS  Google Scholar 

  • Bressa G, Hinton RH, Price SC, Isbir M, Ahmed RS, Grasso P. Immunotoxicity of tri-n-butyltin oxide (TBTO) and tri-n-butyltin chloride (TBTC) in the rat. J Appl Toxicol. 1991;11:397–402.

    Article  PubMed  CAS  Google Scholar 

  • Chikahisa L, Oyama Y, Okazaki E, Noda K. Fluorescent estimation of H2 O2-induced changes in cell viability and cellular nonprotein thiol level of dissociated rat thymocytes. J Pharmacol. 1996;71:299–305.

    CAS  Google Scholar 

  • Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, et al. Features of apoptosis cellsmeasured by flow cytometry. Cytometry. 1992;13:795–808.

    Article  PubMed  CAS  Google Scholar 

  • Dewaal EJ, Schuurman HJ, Van Loveren H, Vos JG. Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin, bis(tri-n-butyltin) oxide and cyclosporine on thymus histophysiology. Crit Rev Toxicol. 1997;27:381–430.

    Article  CAS  Google Scholar 

  • Dimitriou P, Castritsi-Catharios J, Miliou H. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, Sparus aurata L., embryos. Ecotoxicol Environ Saf. 2003;54:30–5.

    Article  PubMed  CAS  Google Scholar 

  • Gennari A, Cortese E, Boveri M, Casado J, Prieto P. Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells. Toxicol. 2003;183:211–20.

    Article  CAS  Google Scholar 

  • Gennari A, Viviani B, Galli CL, Marinovich M, Pieters R, Corsini E. Organotins induce apoptosis by disturbance of [Ca2+] and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol Appl Pharmacol. 2000;169:185–90.

    Article  PubMed  CAS  Google Scholar 

  • Grondin M, Marion M, Denizeau F, Averill-Bates DA. Tributyltin induces apoptotic signaling in hepatocytes though pathways involving the endoplasmic reticulum and mitochondria. Toxicol App Pharmacol. 2007;222:57–68.

    Article  CAS  Google Scholar 

  • Grote K, Stahlschmidt B, Talsness CE, Gericke C, Appel KE, Chahoud I. Effects of organotin compounds on pubertal male rats. Toxicol. 2004;202:145–58.

    Article  CAS  Google Scholar 

  • Inadera H. The immune system as a target for environmental chemicals: xenoestrogens and other compounds. Toxicol Lett. 2006;164:191–206.

    Article  PubMed  CAS  Google Scholar 

  • Isomura M, Kotake Y, Masuda K, Miyara M, Okuda K, Samizo S, et al. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism. Toxicol Appl Pharmacol. 2013;272:137–46.

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Uchikawa R, Yamada M, Arizono N, Oikawa S, Kawanishi S. Environmental pollutant tributyltin promotes Th2 polarization and exacerbates airway inflammation. Eur J Immunol. 2004;34:1312–21.

    Article  PubMed  CAS  Google Scholar 

  • Kergosien DH, Rice CD. Macrophage secretory function is enhanced by low doses of tributyltin-oxide (TBTO), but not tributyltin-chloride (TBTC). Arch Environ Contam Toxicol. 1998;34:223–8.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Sasmal D and Sharma N. Deltamethin induced an apoptogenic signalling pathway in murine thymocytes: exploring the molecular mechanism. 2013: doi:10.1002/jat.2948.

  • Liu SM, Hsia MP, Huang CM. Accumulation of butylin compounds in cobia rachycentron canadum raised in off shore aquaculture sites. Sci Total Environ. 2006;355:167–75.

    Article  PubMed  CAS  Google Scholar 

  • Mitra S, Gera R, Siddiqui W, Khandelwal S. Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood–brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study. Toxicol. 2013;310:39–52.

    Article  CAS  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu Y, Kotake Y, Ohta S. Concentration dependence of the mechanisms of tributyltin-induced apoptosis. Toxicol Sci. 2007;97:438–47.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu Y, Kotake Y, Komasaka K, Hakozaki H, Taguchi R, Kume T, et al. Glutamate excitotoxicity is involved in cell death caused by tributyltin in cultured rat cortical neurons. Toxicol Sci. 2006;89:235–42.

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Takehara Y, Yabuki M, Yoshioka T, Yasuda T, Inoue M, et al. Nitric oxide, a physiological modulator of mitochondrial function. Physiol Chem Phys Med. 1996;28:69–82.

    CAS  Google Scholar 

  • Ormerod MG. Flow cytometry—a basic introduction. USA De Novo; 2008: 2–4.

  • Pathak N, Khandelwal S. Role of oxidative stress and apoptosis in cadmium induced thymic atrophy and splenomegaly in mice. Toxicol Lett. 2007;169:95–108.

    Article  PubMed  CAS  Google Scholar 

  • Ray D, Sarma KD, Antony A. Differential effects of tri-n-butylstannyl benzoates on induction of apoptosis in K562 and MCF-7 cells. IUBMB Life. 2000;49:519–25.

    Article  PubMed  CAS  Google Scholar 

  • Reader SV, Moutardier, Denizeau F. Tributyltin triggers apoptosis in trout hepatocytes: the role of Ca2+, protein kinase C and proteases. Biochim Biophys Acta. 1999;1448:473–85.

    Article  PubMed  CAS  Google Scholar 

  • Scaduto Jr, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. J Biophys. 1999;76:469–77.

    Article  CAS  Google Scholar 

  • Shih YL, Lin CJ, Hsu SW. Cadmium toxicity toward caspase-independent apoptosis though the mitochondrial-calcium pathway in mtDNA-depleted cells. Ann N Y Acad Sci. 2005;1042:497–505.

    Article  PubMed  CAS  Google Scholar 

  • Stridh H, Fava E, Single B, Nicotera P, Orrenius S. Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production. Res Toxicol. 1999;12:874–82.

    Article  CAS  Google Scholar 

  • Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998;429:351–5.

    Google Scholar 

  • Vivani B, MarinovichGalli CL. Action modification and calcium homoeostasis in neurotoxicity: the case of organotin salts. J Toxicol In Vitro. 1997;11:499–503.

    Article  Google Scholar 

  • Wang JF, Jerrells TR, Spitzer JH. Decreased production of reactive oxygen intermediates is an early event during in vitro apoptosis of rat thymocytes. Free Radic Biol Med. 1996;20:533–42.

    Article  PubMed  CAS  Google Scholar 

  • Whalen MM, Green SA, Loganathan BG. Brief butyltin exposure induces irreversible inhibition of the cytotoxic function on human natural killer cells. In vitro Environ Res. 2002;88:19–29.

    Article  CAS  Google Scholar 

  • Wilson S, Dzon L, Reed A, Pruitt M, Whalen MM. Effects of in vitro exposure to low levels of organotin and carbamate pesticides on human natural killer cell cytotoxic function. Environ Toxicol. 2004;19:554–63.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Xing M, Lou J, Wang X, Fu W, Xu L. Apoptotic related biochemical changes in human amnion cells induced by tributyltin. Toxicol. 2007;230:45–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge DST for finical support in the form of DST-INSPIRE fellowship and are also grateful to Dr. Shashi khandelwal, Head, Immunotoxicity laboratory, IITR, India, for her valuable suggestions and guidance for conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelima Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, N., Kumar, A. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes. Cell Biol Toxicol 30, 101–112 (2014). https://doi.org/10.1007/s10565-014-9272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9272-7

Keywords

Navigation