Skip to main content

Advertisement

Log in

Maintenance of luminal pH and protease activity in lysosomes/late endosomes by vacuolar ATPase in chlorpromazine-treated RAW264 cells accumulating phospholipids

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Cationic amphiphilic drugs (CADs) inhibit phospholipases competitively/uncompetitively. It has also been reported that CADs spontaneously accumulate in acidic organelles and increase their luminal pH, which may lead to deactivation of phospholipid-metabolising enzymes, causing cellular phospholipid accumulation. Recently, however, contradictory results have also been reported in that the luminal pH is not increased by CAD treatment. In this study, we examined whether the lysosomal/late endosomal acidic pH was maintained by vacuolar ATPase (v-ATPase) after treatment with chlorpromazine (CPZ) as a model CAD. The activity of lysosomal protease after CPZ treatment was also measured. Oregon Green–dextran–tetramethylrhodamine conjugate was employed to determine the luminal pH of the lysosomes/late endosomes in RAW264 cells. The luminal pH remained acidic after treatment with CPZ for 23 h, and the lysosomal protease activity was not decreased by 5-min CPZ treatment. Co-treatment with CPZ and bafilomycin A1 (v-ATPase inhibitor) raised the luminal pH. These results suggest that the lysosomal/late endosomal pH is not affected by a 23-h CPZ treatment. In addition, lysosomal enzymes presumably maintain their activity when CPZ accumulates. Our results imply that the pH homeostasis in lysosomes/late endosomes is strictly maintained even after a longer treatment with CADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAF:

Bafilomycin A1

CAD:

Cationic amphiphilic drug

CLSM:

Confocal laser scanning microscopy

CPZ:

Chlorpromazine

dex:

Dextran

DIPL:

Drug-induced phospholipidosis

HPLC:

High-performance liquid chromatography

LAMP2:

Lysosomal-associated membrane protein 2

MALDI-TOF:

Matrix-assisted laser desorption-time of flight

MON:

Monensin sodium salt

NHE:

Na+/H+ exchanger

OG:

Oregon Green 488

PMSF:

Phenylmethylsulfonyl fluoride

TMR:

Tetramethylrhodamine

v-ATPase:

Vacuolar ATPase

References

  • Abe A, Shayman JA. The role of negatively charged lipids in lysosomal phospholipase A2 function. J Lipid Res. 2009;50:2027–35.

    Article  CAS  PubMed  Google Scholar 

  • Carlier MB, Laurent G, Tulkens P. In vitro inhibition of lysosomal phospholipases by aminoglycoside antibiotics: a comparative study. Arch Toxicol Suppl. 1984;7:282–5.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson SR, Roth J, Piller F, Fukuda M. Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J Biol Chem. 1988;263:18911–9.

    CAS  PubMed  Google Scholar 

  • Ceh B, Lasic DD. A rigorous theory of remote loading of drugs into liposomes. Langmuir. 1995;11:3356–68.

    Article  CAS  Google Scholar 

  • Corona GL, Cucchi ML, Frattini P, Santagostino G, Schinelli S, Zerbi F, et al. Aspects of amitriptyline and nortriptyline plasma levels monitoring in depression. Psychopharmacol (Berl). 1990;100:334–8.

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y. Phosphorus compounds of muscle and liver. Science. 1929;70:381–2.

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  • Graves AR, Curran PK, Smith CL, Mindell JA. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature. 2008;453:788–92.

    Article  CAS  PubMed  Google Scholar 

  • Hackam DJ, Rotstein OD, Zhang WJ, Demaurex N, Woodside M, Tsai O, et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J Biol Chem. 1997;272:29810–20.

    Article  CAS  PubMed  Google Scholar 

  • Haggie PM, Verkman AS. Unimpaired lysosomal acidification in respiratory epithelial cells in cystic fibrosis. J Biol Chem. 2009;284:7681–6.

    Article  CAS  PubMed  Google Scholar 

  • Halstead BW, Zwickl CM, Morgan RE, Monteith DK, Thomas CE, Bowers RK, et al. A clinical flow cytometric biomarker strategy: validation of peripheral leukocyte phospholipidosis using Nile red. J Appl Toxicol. 2006;26:169–77.

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi R, Kuroda Y, Tanimoto T, Haginaka J. Role of bis(monoacylglycero)phosphate in propranolol binding to phospholipid membranes under acidic conditions as measured by high-performance frontal analysis/capillary electrophoresis. Electrophoresis. 2012;33:3101–6.

    Article  CAS  PubMed  Google Scholar 

  • Hollemans M, Elferink RO, de Groot PG, Strijland A, Tager JM. Accumulation of weak bases in relation to intralysosomal pH in cultured human skin fibroblasts. Biochim Biophys Acta. 1981;643:140–51.

    Article  CAS  PubMed  Google Scholar 

  • Hostetler KY, Reasor M, Yazaki PJ. Chloroquine-induced phospholipid fatty liver. Measurement of drug and lipid concentrations in rat liver lysosomes. J Biol Chem. 1985;260:215–9.

    CAS  PubMed  Google Scholar 

  • Hostetler KY, Reasor MJ, Walker ER, Yazaki PJ, Frazee BW. Role of phospholipase A inhibition in amiodarone pulmonary toxicity in rats. Biochim Biophys Acta. 1986;875:400–5.

    Article  CAS  PubMed  Google Scholar 

  • Humphries 4th WH, Payne CK. Imaging lysosomal enzyme activity in live cells using self-quenched substrates. Anal Biochem. 2012;424:178–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishizaki J, Yokogawa K, Hirano M, Nakashima E, Sai Y, Ohkuma S, et al. Contribution of lysosomes to the subcellular distribution of basic drugs in the rat liver. Pharm Res. 1996;13:902–6.

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki J, Yokogawa K, Ichimura F, Ohkuma S. Uptake of imipramine in rat liver lysosomes in vitro and its inhibition by basic drugs. J Pharmacol Exp Ther. 2000;294:1088–98.

    CAS  PubMed  Google Scholar 

  • Joshi UM, Kodavanti PR, Coudert B, Dwyer TM, Mehendale HM. Types of interaction of amphiphilic drugs with phospholipid vesicles. J Pharmacol Exp Ther. 1988;246:150–7.

    CAS  PubMed  Google Scholar 

  • Kodavanti UP, Mehendale HM. Cationic amphiphilic drugs and phospholipid storage disorder. Pharmacol Rev. 1990;42:327–54.

    CAS  PubMed  Google Scholar 

  • Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104:205–15.

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Henkel AW, Groemer TW, Städtler S, Welzel O, Tripal P, et al. Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system. J Cell Physiol. 2010;224:152–64.

    CAS  PubMed  Google Scholar 

  • Kubo M, Hostetler KY. Mechanism of cationic amphiphilic drug inhibition of purified lysosomal phospholipase A1. Biochemistry. 1985;24:6515–20.

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, Saito M. Prediction of phospholipidosis-inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis. Toxicol In Vitro. 2010;24:661–8.

    Article  CAS  PubMed  Google Scholar 

  • Lin HJ, Herman P, Lakowicz JR. Fluorescence lifetime-resolved pH imaging of living cells. Cytometry A. 2003;52:77–89.

    Article  PubMed  Google Scholar 

  • Ma JY, Ma JK, Weber KC. Fluorescence studies of the binding of amphiphilic amines with phospholipids. J Lipid Res. 1985;26:735–44.

    CAS  PubMed  Google Scholar 

  • Manders EMM, Verbeek FJ, Aten JA. Measurement of co-localization of objects in dual-colour confocal images. J Microsc. 1993;169:375–82.

    Article  Google Scholar 

  • Morissette G, Ammoury A, Rusu D, Marguery MC, Lodge R, Poubelle PE, et al. Intracellular sequestration of amiodarone: role of vacuolar ATPase and macroautophagic transition of the resulting vacuolar cytopathology. Br J Pharmacol. 2009;157:1531–40.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem. 2005;280:1561–72.

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki R, Matsushita M, Kanazawa H. Localization, ion transport activity, and physiological function of mammalian organellar NHEs. Seikagaku. 2010;82:577–90.

    CAS  PubMed  Google Scholar 

  • Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978;75:3327–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito M, Hirai E, Hamaguchi R, Kuroda Y. Cellular phospholipid—accumulation induced by basic drugs does not depend on phospholipid uptake nor neutralization of acidic vesicles. J Pharm Sci & Res. 2011;3:1163–9.

    CAS  Google Scholar 

  • Sharma DK, Choudhury A, Singh RD, Wheatley CL, Marks DL, Pagano RE. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J Biol Chem. 2003;278:7564–72.

    Article  CAS  PubMed  Google Scholar 

  • Tietz PS, Yamazaki K, LaRusso NF. Time-dependent effects of chloroquine on pH of hepatocyte lysosomes. Biochem Pharmacol. 1990;40:1419–21.

    Article  CAS  PubMed  Google Scholar 

  • van Weert AW, Dunn KW, Geuze HJ, Maxfield FR, Stoorvogel W. Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J Cell Biol. 1995;130:821–34.

    Article  PubMed  Google Scholar 

  • Walker O, Dawodu AH, Adeyokunnu AA, Salako LA, Alvan G. Plasma chloroquine and desethylchloroquine concentrations in children during and after chloroquine treatment for malaria. Br J Clin Pharmacol. 1983;16:701–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiström CA, Jones GM, Tobias PS, Sklar LA. Fluorescence resonance energy transfer analysis of lipopolysaccharide in detergent micelles. Biophys J. 1996;70:988–97.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng N, Zhang X, Rosania GR. Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine. J Pharmacol Exp Ther. 2011;336:661–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by JSPS KAKENHI Grant Number 21790051. This public sponsor had no role in the design of the study, in its execution or in the decision to submit the manuscript for publication. The authors extend appreciation to Dr Ken-ichi Akagi and Dr Sumie Katayama at the National Institute of Biomedical Innovation for obtaining the transmission electron microscopic images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Kuroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamaguchi, R., Haginaka, J., Tanimoto, T. et al. Maintenance of luminal pH and protease activity in lysosomes/late endosomes by vacuolar ATPase in chlorpromazine-treated RAW264 cells accumulating phospholipids. Cell Biol Toxicol 30, 67–77 (2014). https://doi.org/10.1007/s10565-014-9269-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-014-9269-2

Keywords

Navigation