Skip to main content
Log in

Olaquindox-induced apoptosis is suppressed through p38 MAPK and ROS-mediated JNK pathways in HepG2 cells

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

We investigated mitogen-activated protein kinase (MAPK) pathways as well as reactive oxygen species (ROS) in olaquindox-induced apoptosis. Exposure of HepG2 cells to olaquindox resulted in the phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). To confirm the role of p38 MAPK and JNK, HepG2 cells were pretreated with MAPKs-specific inhibitors prior to olaquindox treatment. Olaquindox-induced apoptosis was significantly potentiated by the JNK inhibitor (SP600125) or the p38 MAPK inhibitor (SB203580). Furthermore, we observed that olaquindox treatment led to ROS generation and that olaquindox-induced apoptosis and ROS generation were both significantly reduced by the antioxidants, superoxide dismutase and catalase. In addition, the levels of phosphorylation of JNK, but not p38 MAPK, were significantly suppressed after pretreatment of the antioxidants, while inhibition of the activations of JNK or p38 MAPK had no effect on ROS generation. This result suggested that ROS may be the upstream mediator for the activation of JNK. Conclusively, our results suggested that apoptosis in response to olaquindox treatment in HepG2 cells might be suppressed through p38 MAPK and ROS–JNK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HepG2 cells:

Human hepatoma G2 cells

ROS:

Reactive oxygen species

MAPKs:

Mitogen-activated protein kinases

ERK1/2:

Extracellular signal-regulated kinases 1/2

JNK:

c-Jun N-terminal kinases

SOD:

Superoxide dismutase

DMSO:

Dimethyl sulfoxide

PI:

Propidium iodide

DCF-DA:

2,7-Dichlorodihydrofluorescein diacetate

References

  • Belhadjali H, Marguery M, Journe F, Giordano-Labadie F, Lefebvre H, Bazex J. Allergic and photoallergic contact dermatitis to olaquindox in a pig breeder with prolonged photosensitivity. Photodermatol Photo. 2002;18:52–3.

    Article  CAS  Google Scholar 

  • Bi Y, Wang X, Xu S, Sun L, Zhang L, Zhong F, et al. Metabolism of olaquindox in rat and identification of metabolites in urine and feces using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:889–98.

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Tang S, Jin X, Zou J, Chen K, Zhang T, et al. Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol. 2009;47:328–34.

    Article  PubMed  CAS  Google Scholar 

  • Čihák R, Srb V. Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents. I. Micronucleus test in rats. Mutat Res-Gen Tox En. 1983;116:129–35.

    Article  Google Scholar 

  • De Vries H, Bojarski J, Donker AA, Bakri A, Beyersbergen van Henegouwen GMJ. Photochemical reactions of quindoxin, olaquindox, carbadox and cyadox with protein, indicating photoallergic properties. Toxicol. 1990;63:85–95.

    Article  Google Scholar 

  • Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell. 2007;11:191–205.

    Article  PubMed  CAS  Google Scholar 

  • Hancock J, Desikan R, Neill S. Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans. 2001;29:345–9.

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Chen Q, Xiao X. Molecular mechanism of mutagenesis induced by olaquindox using a shuttle vector pSP189/mammalian cell system. Mutat Res-Fund Mol M. 2006;599:21–5.

    Article  CAS  Google Scholar 

  • Huang XJ, Zhang HH, Wang X, Huang LL, Zhang LY, Yan CX, et al. ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro. Chem Biol Interact. 2010;185:227–34.

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.

    Article  PubMed  CAS  Google Scholar 

  • Kang YH, Lee SJ. The role of p38 MAPK and JNK in arsenic trioxide-induced mitochondrial cell death in human cervical cancer cells. J Cell Physiol. 2008;217:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Chang TS, Lee TH, Kim ES, Yu DY, Rhee SG. Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-α. J Biol Chem. 2004;279:2535–43.

    Article  PubMed  CAS  Google Scholar 

  • Lee WYW, Liu KWK, Yeung JHK. Reactive oxygen species-mediated kinase activation by dihydrotanshinone in tanshinones-induced apoptosis in HepG2 cells. Cancer Lett. 2009;285:46–57.

    Article  PubMed  CAS  Google Scholar 

  • Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, et al. TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 2005;19:362–70.

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Chen X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 2002;21:7195–204.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Xiao Y, Xiong C, Wei A, Ruan J. Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. Eur J Pharmacol. 2011;654:209–16.

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Yu CR, Li WH, Li WX. Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell res. 2008;18:879–88.

    Article  PubMed  CAS  Google Scholar 

  • Martindale J, Holbrook N. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Mersch-Sundermann V, Knasmuller S, Wu XJ, Darroudi F, Kassie F. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology. 2004;198:329–40.

    Article  PubMed  CAS  Google Scholar 

  • Nunoshiba T, Nishioka H. Genotoxicity of quinoxaline 1,4-dioxide derivatives in Escherichia coli and Salmonella typhimurium. Mutat Res-DNA Repair. 1989;217:203–9.

    Article  PubMed  CAS  Google Scholar 

  • Rubio S, Quintana J, Eiroa JL, Triana J, Estévez F. Acetyl derivative of quercetin 3-methyl ether-induced cell death in human leukemia cells is amplified by the inhibition of ERK. Carcinogenesis. 2007;28:2105–13.

    Article  PubMed  CAS  Google Scholar 

  • Sahu RP, Zhang R, Batra S, Shi Y, Srivastava SK. Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cells. Carcinogenesis. 2009;30:1744–53.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, et al. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14:156–65.

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012;17:852–70.

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Shi Y, Yu H, Hu Y, Wang Y, Yang K. p,p′-Dichlorodiphenoxydichloroethylene induced apoptosis of Sertoli cells through oxidative stress-mediated p38 MAPK and mitochondrial pathway. Toxicol Lett. 2011;202:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Ventura JJ, Cogswell P, Flavell RA, Baldwin AS, Davis RJ. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Gene Dev. 2004;18:2905–15.

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF, Nebreda R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhang W, Wang YL, Ihsan A, Dai MH, Huang LL, et al. Two generation reproduction and teratogenicity studies of feeding quinocetone fed to Wistar rats. Food Chem Toxicol. 2012;50:1600–9.

    Article  PubMed  Google Scholar 

  • Wen J, Zhang Y, Chen X, Shen L, Li GC, Xu M. Enhancement of diallyl disulfide-induced apoptosis by inhibitors of MAPKs in human HepG2 hepatoma cells. Biochem Pharmacol. 2004;68:323–31.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Zhao D, Song J, Xu Z, Zhou J. Preparation of epichlorohydrine-modified chitosan microsphere functionalized materials and adsorption characterization toward olaquindox. Int J Polym Anal Ch. 2011;16:118–26.

    Article  CAS  Google Scholar 

  • Yoshimura H, Nakamura M, Koeda T, Yoshikawa K. Mutagenicities of carbadox and olaquindox-growth promoters for pigs. Mutat Res-Gen Tox En. 1981;90:49–55.

    Article  CAS  Google Scholar 

  • Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, et al. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell. 2004;13:329–40.

    Article  PubMed  CAS  Google Scholar 

  • Yu JY, Zheng ZH, Son YO, Shi X, Jang YO, Lee JC. Mycotoxin zearalenone induces AIF-and ROS-mediated cell death through p53- and MAPK-dependent signaling pathways in RAW264.7 macrophages. Toxicol In Vitro. 2011;5:1654–63.

    Article  Google Scholar 

  • Zou J, Chen Q, Tang S, Jin X, Chen K, Zhang T, et al. Olaquindox-induced genotoxicity and oxidative DNA damage in human hepatoma G2 (HepG2) cells. Mutat Res-Gen Tox En. 2009;676:27–33.

    Article  CAS  Google Scholar 

  • Zou J, Chen Q, Jin X, Tang S, Chen K, Zhang T, et al. Olaquindox induces apoptosis through the mitochondrial pathway in HepG2 cells. Toxicol. 2011;285:104–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Exclusive Research Fund for Central Universities from the Ministry of Education of the People’s Republic of China (2011JS009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-long Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Wx., Tang, Ss., Jin, X. et al. Olaquindox-induced apoptosis is suppressed through p38 MAPK and ROS-mediated JNK pathways in HepG2 cells. Cell Biol Toxicol 29, 229–238 (2013). https://doi.org/10.1007/s10565-013-9249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9249-y

Keywords

Navigation