Skip to main content

Advertisement

Log in

Mechanisms of proteasome inhibitor-induced cytotoxicity in malignant glioma

  • Review Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The 26S proteasome constitutes an essential degradation apparatus involved in the consistent recycling of misfolded and damaged proteins inside cells. The aberrant activation of the proteasome has been widely observed in various types of cancers and implicated in the development and progression of carcinogenesis. In the era of targeted therapies, the clinical use of proteasome inhibitors necessitates a better understanding of the molecular mechanisms of cell death responsible for their cytotoxic action, which are reviewed here in the context of sensitization of malignant gliomas, a tumor type particularly refractory to conventional treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–22.

    PubMed  CAS  Google Scholar 

  • Ahmed SF, Deb S, Paul I, Chatterjee A, Mandal T, Chatterjee U, et al. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J Biol Chem. 2012;287:15996–6006.

    Article  PubMed  CAS  Google Scholar 

  • An J, Rettig MB. Epidermal growth factor receptor inhibition sensitizes renal cell carcinoma cells to the cytotoxic effects of bortezomib. Mol Cancer Ther. 2007;6:61–9.

    Article  PubMed  CAS  Google Scholar 

  • Balyasnikova IV, Ferguson SD, Han Y, Liu F, Lesniak MS. Therapeutic effect of neural stem cells expressing TRAIL and bortezomib in mice with glioma xenografts. Cancer Lett. 2011;310:148–59.

    Article  PubMed  CAS  Google Scholar 

  • Baron V, Schwartz M. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor beta. J Biol Chem. 2000;275:39318–23.

    Article  PubMed  CAS  Google Scholar 

  • Barr P, Fisher R, Friedberg J. The role of bortezomib in the treatment of lymphoma. Cancer Invest. 2007;25:766–75.

    Article  PubMed  CAS  Google Scholar 

  • Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer. 2004;40:2217–29.

    Article  PubMed  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  • Cavaliere R, Newton H. Cytotoxic and molecular chemotherapy for high-grade glioma: an emerging strategy for the future. Expert Opin Pharmacother. 2006;7:749–65.

    Article  PubMed  CAS  Google Scholar 

  • Cecarini V, Quassinti L, Di Blasio A, Bonfili L, Bramucci M, Lupidi G, et al. Effects of thymoquinone on isolated and cellular proteasomes. FEBS J. 2010;277:2128–41.

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Mazzola A, Abbracchio MP. Proteasome inhibitors potentiate etoposide-induced cell death in human astrocytoma cells bearing a mutated p53 isoform. J Pharmacol Exp Ther. 2006;319:1424–34.

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group Study. Cancer. 1983;52:997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Cichowski K, Santiago S, Jardim M, Johnson BW, Jacks T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 2003;17:449–54.

    Article  PubMed  CAS  Google Scholar 

  • Ding WX, Yin XM. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy. 2008;4:141–50.

    PubMed  CAS  Google Scholar 

  • Driscoll JJ, Woodle ES. Targeting the ubiquitin + proteasome system in solid tumors. Semin Hematol. 2012;49:277–83.

    Article  PubMed  CAS  Google Scholar 

  • Durrant D, Liu J, Yang HS, Lee RM. The bortezomib-induced mitochondrial damage is mediated by accumulation of active protein kinase C-delta. Biochem Biophys Res Commun. 2004;321:905–8.

    Article  PubMed  CAS  Google Scholar 

  • Fan WH, Hou Y, Meng FK, Wang XF, Luo YN, Ge PF. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin. 2011;32:619–25.

    Article  PubMed  CAS  Google Scholar 

  • Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, et al. Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin–proteasome system. Mol Cancer Ther. 2009;8:3140–50.

    Article  PubMed  CAS  Google Scholar 

  • Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol. 2012;14:215–21.

    Article  PubMed  CAS  Google Scholar 

  • Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F, et al. Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res. 2010;32:94–100.

    Article  PubMed  CAS  Google Scholar 

  • Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, et al. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin. 2009;30:1046–52.

    Article  PubMed  CAS  Google Scholar 

  • Glogowska A, Stetefeld J, Weber E, Ghavami S, Hoang-Vu C, Klonisch T. Epidermal growth factor cytoplasmic domain affects ErbB protein degradation by the lysosomal and ubiquitin–proteasome pathway in human cancer cells. Neoplasia. 2012;14:396–409.

    PubMed  CAS  Google Scholar 

  • Gong X, Schwartz PH, Linskey ME, Bota DA. Neural stem/progenitors and glioma stem-like cells have differential sensitivity to chemotherapy. Neurology. 2011;76:1126–34.

    Article  PubMed  CAS  Google Scholar 

  • Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, et al. Correlation of O 6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26:4189–99.

    Article  PubMed  CAS  Google Scholar 

  • Henninger N, Sicard KM, Bouley J, Fisher M, Stagliano NE. The proteasome inhibitor VELCADE reduces infarction in rat models of focal cerebral ischemia. Neurosci Lett. 2006;398:300–5.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007;100:1276–91.

    Article  PubMed  CAS  Google Scholar 

  • Hetschko H, Voss V, Seifert V, Prehn JH, Kögel D. Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis. FEBS J. 2008;275:1925–36.

    Article  PubMed  CAS  Google Scholar 

  • Higashitsuji H, Itoh K, Nagao T, Dawson S, Nonoguchi K, Kido T, et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med. 2000;6:96–9.

    Article  PubMed  CAS  Google Scholar 

  • Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer. 2006;6:776–88.

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Chen CH. Proteasome regulators: activators and inhibitors. Curr Med Chem. 2009;16:931–9.

    Article  PubMed  CAS  Google Scholar 

  • Jane EP, Premkumar DR, Pollack IF. Bortezomib sensitizes malignant human glioma cells to TRAIL, mediated by inhibition of the NF-{kappa}B signaling pathway. Mol Cancer Ther. 2011;10:198–208.

    Article  PubMed  CAS  Google Scholar 

  • Johnson GG, White MC, Grimaldi M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr Pharm Des. 2011;17:284–92.

    Article  PubMed  CAS  Google Scholar 

  • Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res. 2008;68:843–51.

    Article  PubMed  CAS  Google Scholar 

  • Kawabata S, Gills JJ, Mercado-Matos JR, Lopiccolo J, Wilson 3rd W, Hollander MC, et al. Synergistic effects of nelfinavir and bortezomib on proteotoxic death of NSCLC and multiple myeloma cells. Cell Death Dis. 2012;3:e353.

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Brush JM, Watson PA, Cacalano NA, Iwamoto KS, McBride WH. Epidermal growth factor receptor vIII expression in U87 glioblastoma cells alters their proteasome composition, function, and response to irradiation. Mol Cancer Res. 2008;6:426–34.

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Choi K, Kwon D, Benveniste EN, Choi C. Ubiquitin–proteasome pathway as a primary defender against TRAIL-mediated cell death. Cell Mol Life Sci. 2004;61:1075–81.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa H, Tani E, Ikemoto H, Ozaki I, Nakano A, Omura S. Proteasome inhibitors induce mitochondria-independent apoptosis in human glioma cells. FEBS Lett. 1999;443:181–6.

    Article  PubMed  CAS  Google Scholar 

  • Kleinschnitz C, Blecharz K, Kahles T, Schwarz T, Kraft P, Göbel K, et al. Glucocorticoid insensitivity at the hypoxic blood–brain barrier can be reversed by inhibition of the proteasome. Stroke. 2011;42:1081–9.

    Article  PubMed  CAS  Google Scholar 

  • Ko A, Shin JY, Seo J, Lee KD, Lee EW, Lee MS, et al. Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. J Natl Cancer Inst. 2012;104:1660–72.

    Article  PubMed  CAS  Google Scholar 

  • Ko JK, Choi CH, Kim YK, Kwon CH. The proteasome inhibitor MG-132 induces AIF nuclear translocation through down-regulation of ERK and Akt/mTOR pathway. Neurochem Res. 2011;36:722–31.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S, Miyazawa K, Moriya S, Takase A, Naito M, Inazu M, et al. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int J Oncol. 2012;40:1029–39.

    PubMed  CAS  Google Scholar 

  • Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM, et al. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res. 2007;13:3403–12.

    Article  PubMed  CAS  Google Scholar 

  • Kubicek GJ, Werner-Wasik M, Machtay M, Mallon G, Myers T, Ramirez M, et al. Phase I trial using proteasome inhibitor bortezomib and concurrent temozolomide and radiotherapy for central nervous system malignancies. Int J Radiat Oncol Biol Phys. 2009;74:433–9.

    Article  PubMed  CAS  Google Scholar 

  • Kyritsis AP, Tachmazoglou F, Rao JS, Puduvalli VK. Bortezomib sensitizes human astrocytoma cells to tumor necrosis factor related apoptosis-inducing ligand induced apoptosis. Clin Cancer Res. 2007;13:6540–1. author reply 6541–2.

    Article  PubMed  CAS  Google Scholar 

  • Labussiere M, Pinel S, Delfortrie S, Plenat F, Chastagner P. Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts. Oncol Rep. 2008;20:1283–7.

    PubMed  CAS  Google Scholar 

  • La Ferla-Brühl K, Westhoff MA, Karl S, Kasperczyk H, Zwacka RM, Debatin KM, et al. NF-kappaB-independent sensitization of glioblastoma cells for TRAIL-induced apoptosis by proteasome inhibition. Oncogene. 2007;26:571–82.

    Article  PubMed  CAS  Google Scholar 

  • Legnani FG, Pradilla G, Thai QA, Fiorindi A, Recinos PF, Tyler BM, et al. Lactacystin exhibits potent anti-tumor activity in an animal model of malignant glioma when administered via controlled-release polymers. J Neurooncol. 2006;77:225–32.

    Article  PubMed  CAS  Google Scholar 

  • Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 2009;118:329–47.

    Article  PubMed  CAS  Google Scholar 

  • Lennartsson J, Wardega P, Engström U, Hellman U, Heldin CH. Alix facilitates the interaction between c-Cbl and platelet-derived growth factor beta-receptor and thereby modulates receptor down-regulation. J Biol Chem. 2006;281:39152–8.

    Article  PubMed  CAS  Google Scholar 

  • Lièvre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5.

    Article  PubMed  Google Scholar 

  • Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res. 2011;21:867–83.

    Article  PubMed  CAS  Google Scholar 

  • Low J, Blosser W, Dowless M, Ricci-Vitiani L, Pallini R, de Maria R, et al. Knockdown of ubiquitin ligases in glioblastoma cancer stem cells leads to cell death and differentiation. J Biomol Screen. 2012;17:152–62.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig H, Khayat D, Giaccone G, Facon T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer. 2005;104:1794–807.

    Article  PubMed  CAS  Google Scholar 

  • Mani A, Gelmann EP. The ubiquitin–proteasome pathway and its role in cancer. J Clin Oncol. 2005;23:4776–89.

    Article  PubMed  CAS  Google Scholar 

  • Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer. Acta Oncol. 2012;51:822–30.

    Article  PubMed  CAS  Google Scholar 

  • Medical Research Council Brain Tumor Working Party. Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council trial. J Clin Oncol. 2001;19:509–18.

    Google Scholar 

  • Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M, et al. WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol. 2007;114:111–9.

    Article  PubMed  CAS  Google Scholar 

  • Milano A, Iaffaioli RV, Caponigro F. The proteasome: a worthwhile target for the treatment of solid tumours? Eur J Cancer. 2007;43:1125–33.

    Article  PubMed  CAS  Google Scholar 

  • Mladkova N, Chakravarti A. Molecular profiling in glioblastoma: prelude to personalized treatment. Curr Oncol Rep. 2009;11:53–61.

    Article  PubMed  CAS  Google Scholar 

  • Morgillo F, D'Aiuto E, Troiani T, Martinelli E, Cascone T, De Palma R, et al. Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors. Lung Cancer. 2011;71:283–90.

    Article  PubMed  Google Scholar 

  • Moriya S, Che XF, Komatsu S, Abe A, Kawaguchi T, Gotoh A, et al. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int J Oncol. 2013;42:1541–50.

    PubMed  CAS  Google Scholar 

  • Naumann U, Schmidt F, Wick W, Frank B, Weit S, Gillissen B, et al. Adenoviral natural born killer gene therapy for malignant glioma. Hum Gene Ther. 2003;14:1235–46.

    Article  PubMed  CAS  Google Scholar 

  • Ng K, Nitta M, Hu L, Kesari S, Kung A, D'Andrea A, et al. A small interference RNA screen revealed proteasome inhibition as strategy for glioblastoma therapy. Clin Neurosurg. 2009;56:107–18.

    PubMed  Google Scholar 

  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170:1445–53.

    Article  PubMed  CAS  Google Scholar 

  • Pédeboscq S, L'Azou B, Passagne I, De Giorgi F, Ichas F, Pometan JP, et al. Cytotoxic and apoptotic effects of bortezomib and gefitinib compared to alkylating agents on human glioblastoma cells. J Exp Ther Oncol. 2008;7:99–111.

    PubMed  Google Scholar 

  • Phuphanich S, Supko JG, Carson KA, Grossman SA, Burt Nabors L, Mikkelsen T, et al. Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. J Neurooncol. 2010;100:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Piccinini M, Rinaudo MT, Anselmino A, Ramondetti C, Buccinnà B, Fiano V, et al. Characterization of the 20S proteasome in human glioblastomas. Anticancer Res. 2005;25:3203–10.

    PubMed  CAS  Google Scholar 

  • Premkumar DR, Jane EP, Agostino NR, DiDomenico JD, Pollack IF. Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Mol Carcinog. 2013;52:118–33.

    Article  PubMed  CAS  Google Scholar 

  • Premkumar DR, Jane EP, DiDomenico JD, Vukmer NA, Agostino NR, Pollack IF. ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines. J Pharmacol Exp Ther. 2012;341:859–72.

    Article  PubMed  CAS  Google Scholar 

  • Preusser M, Haberler C, Hainfellner JA. Malignant glioma: neuropathology and neurobiology. Wien Med Wochenschr. 2006;156:332–7.

    Article  PubMed  Google Scholar 

  • Pyrko P, Kardosh A, Wang W, Xiong W, Schönthal AH, Chen TC. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress. Cancer Res. 2007;67:10920–8.

    Article  PubMed  CAS  Google Scholar 

  • Qu C, Mahmood A, Ning R, Xiong Y, Zhang L, Chen J, et al. The treatment of traumatic brain injury with velcade. J Neurotrauma. 2010;27:1625–34.

    Article  PubMed  Google Scholar 

  • Richardson PG, Schlossman R, Hideshima T, Anderson KC. New treatments for multiple myeloma. Oncology (Williston Park). 2005;19:1781–92. discussion 1792, 1795–7.

    Google Scholar 

  • Roth P, Kissel M, Herrmann C, Eisele G, Leban J, Weller M, et al. SC68896, a novel small molecule proteasome inhibitor, exerts antiglioma activity in vitro and in vivo. Clin Cancer Res. 2009;15:6609–18.

    Article  PubMed  CAS  Google Scholar 

  • Runge VM. Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging. 2000;12:205–13.

    Article  PubMed  CAS  Google Scholar 

  • Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110:13–24.

    Article  PubMed  Google Scholar 

  • Selimovic D, Porzig BB, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, et al. Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013;25:308–18.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro WR, Green SB, Burger PC, Mahaley Jr MS, Selker RG, VanGilder JC, et al. Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J Neurosurg. 1989;71:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Gu W. Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 2012;3:240–8.

    Article  PubMed  Google Scholar 

  • Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 2013;73:3051–61.

    Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  PubMed  CAS  Google Scholar 

  • Stupp R, Tonn JC, Brada M, Pentheroudakis G, ESMO Guidelines Working Group. High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v190–3.

    Article  PubMed  Google Scholar 

  • Styczynski J, Olszewska-Slonina D, Kolodziej B, Napieraj M, Wysocki M. Activity of bortezomib in glioblastoma. Anticancer Res. 2006;26:4499–503.

    PubMed  CAS  Google Scholar 

  • Tani E, Kitagawa H, Ikemoto H, Matsumoto T. Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells. FEBS Lett. 2001;504:53–8.

    Article  PubMed  CAS  Google Scholar 

  • Thal SC, Schaible EV, Neuhaus W, Scheffer D, Brandstetter M, Engelhard K, et al. Inhibition of proteasomal glucocorticoid receptor degradation restores dexamethasone-mediated stabilization of the blood–brain barrier after traumatic brain injury*. Crit Care Med. 2013;41:1305–15.

    Article  PubMed  CAS  Google Scholar 

  • Thompson SJ, Loftus LT, Ashley MD, Meller R. Ubiquitin–proteasome system as a modulator of cell fate. Curr Opin Pharmacol. 2008;8:90–5.

    Article  PubMed  CAS  Google Scholar 

  • Unterkircher T, Cristofanon S, Vellanki SH, Nonnenmacher L, Karpel-Massler G, Wirtz CR, et al. Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing tBid stability and mitochondrial apoptosis. Clin Cancer Res. 2011;17:4019–30.

    Article  PubMed  CAS  Google Scholar 

  • Vlachostergios PJ, Hatzidaki E, Stathakis NE, Koukoulis GK, Papandreou CN. Bortezomib downregulates MGMT expression in T98G glioblastoma cells. Cell Mol Neurobiol. 2013; 33:313–8.

    Google Scholar 

  • Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin–proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med. 2009a;13:3006–18.

    Article  PubMed  Google Scholar 

  • Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin–proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med. 2009b;13:3019–31.

    Article  PubMed  Google Scholar 

  • Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, et al. In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst. 2009;101:350–9.

    Article  PubMed  CAS  Google Scholar 

  • Vlashi E, Mattes M, Lagadec C, Donna LD, Phillips TM, Nikolay P, et al. Differential effects of the proteasome inhibitor NPI-0052 against glioma cells. Transl Oncol. 2010;3:50–5.

    PubMed  Google Scholar 

  • Wagenknecht B, Hermisson M, Eitel K, Weller M. Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem. 1999;9:117–25.

    Article  PubMed  CAS  Google Scholar 

  • Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem. 2000;75:2288–97.

    Article  PubMed  CAS  Google Scholar 

  • Weaver KD, Yeyeodu S, Cusack Jr JC, Baldwin Jr AS, Ewend MG. Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J Neurooncol. 2003;61:187–96.

    Article  PubMed  Google Scholar 

  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  PubMed  CAS  Google Scholar 

  • Williamson MJ, Blank JL, Bruzzese FJ, Cao Y, Daniels JS, Dick LR, et al. Comparison of biochemical and biological effects of ML858 (salinosporamide A) and bortezomib. Mol Cancer Ther. 2006;5:3052–61.

    Article  PubMed  CAS  Google Scholar 

  • Wu WK, Cho CH, Lee CW, Wu K, Fan D, Yu J, et al. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett. 2010a;293:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Wu WK, Sakamoto KM, Milani M, Aldana-Masankgay G, Fan D, Wu K, et al. Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Updat. 2010b;13:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Liu Z, Zong R, Liu L, Zhao S, Bacus SS, et al. Truncated ErbB2 expressed in tumor cell nuclei contributes to acquired therapeutic resistance to ErbB2 kinase inhibitors. Mol Cancer Ther. 2011;10:1367–74.

    Article  PubMed  CAS  Google Scholar 

  • Yan YY, Bai JP, Xie Y, Yu JZ, Ma CG. The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol Lett. 2013a;5:242–8.

    PubMed  CAS  Google Scholar 

  • Yan Y, Xu Y, Gao YY, Zong ZH, Zhang Q, Li C, et al. Implication of 14-3-3ε and 14-3-3θ/τ in proteasome inhibition-induced apoptosis of glioma cells. Cancer Sci. 2013b;104:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, et al. Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene. 2005;24:344–54.

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006;5:2378–87.

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Friday BB, Yang L, Atadja P, Wigle D, Sarkaria J, et al. Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro Oncol. 2008;10:309–19.

    Article  PubMed  CAS  Google Scholar 

  • Zanotto-Filho A, Braganhol E, Battastini AM, Moreira JC. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling. Invest New Drugs. 2012;30:2252–62.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang ZG, Buller B, Jiang J, Jiang Y, Zhao D, et al. Combination treatment with VELCADE and low-dose tissue plasminogen activator provides potent neuroprotection in aged rats after embolic focal ischemia. Stroke. 2010;41:1001–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Yang H. The von Hippel–Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS One. 2011;6:e23936.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

There is no conflict of interest or financial support related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis J. Vlachostergios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlachostergios, P.J., Voutsadakis, I.A. & Papandreou, C.N. Mechanisms of proteasome inhibitor-induced cytotoxicity in malignant glioma. Cell Biol Toxicol 29, 199–211 (2013). https://doi.org/10.1007/s10565-013-9248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-013-9248-z

Keywords

Navigation