Skip to main content
Log in

Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death

A comparative study of H2O2, paraquat, t-BHP, etoposide and TNF-α-induced cell death

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H2O2-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H2O2 could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ΔΨm:

Mitochondrial membrane potential

cyt c:

Cytochrome c

eto:

Etoposide

E/TNF:

Emetine plus TNF-α

FSC:

Forward scatter

MMP:

Mitochondrial membranes permeabilization

PI:

Propidium iodide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

t-BHP:

tert-Butyl hydroperoxide

TNF:

Tumour necrosis factor

Vit E:

Vitamin E

References

  • Aldunate J, Coloma-Torres L, Spencer P, Morello A, Ojeda JM, Repetto Y. Effects of 2(3)-tert-butyl-4-hydroxyanisole (BHA) on in situ mitochondria of Trypanosoma cruzi. FEBS Lett. 1992;303(1):73–6.

    Article  PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Li X, Gong J. Assays of cell viability: discrimination of cells dying by apoptosis. Methods Cell Biol. 1994;41:15–38.

    Article  PubMed  CAS  Google Scholar 

  • Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10(9):369–77.

    Article  PubMed  CAS  Google Scholar 

  • Dive C, Gregory CD, Phipps DJ, Evans DL, Milner AE, Wyllie AH. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta. 1992;1133(3):275–85.

    Article  PubMed  CAS  Google Scholar 

  • Dumay A, Rincheval V, Trotot P, Mignotte B, Vayssiere JL. The superoxide dismutase inhibitor diethyldithiocarbamate has antagonistic effects on apoptosis by triggering both cytochrome c release and caspase inhibition. Free Radic Biol Med. 2006;40(8):1377–90.

    Article  PubMed  CAS  Google Scholar 

  • Fleury C, Mignotte B, Vayssiere JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84(2–3):131–41.

    Article  PubMed  CAS  Google Scholar 

  • Greenstock CL, Miller RW. The oxidation of tiron by superoxide anion. Kinetics of the reaction in aqueous solution in chloroplasts. Biochim Biophys Acta. 1975;396(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  • Jourdain A, Martinou JC. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol. 2009;41(10):1884–9.

    Article  PubMed  CAS  Google Scholar 

  • Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem. 2002;277(19):16547–52.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163.

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  • Meier B, Cross AR, Hancock JT, Kaup FJ, Jones OT. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Biochem J. 1991;275(Pt 1):241–5.

    PubMed  CAS  Google Scholar 

  • Nagata S. Apoptosis by death factor. Cell. 1997;88(3):355–65.

    Article  PubMed  CAS  Google Scholar 

  • Petit PX, O’Connor JE, Grunwald D, Brown SC. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem. 1990;194(2):389–97.

    Article  PubMed  CAS  Google Scholar 

  • Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL. TNF-alpha activates at least two apoptotic signaling cascades. Oncogene. 1998;17(13):1639–51.

    Article  PubMed  CAS  Google Scholar 

  • Tappel AL. Biological antioxidant protection against lipid peroxidation damage. Am J Clin Nutr. 1970;23(8):1137–9.

    CAS  Google Scholar 

  • Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004;16(2):139–44.

    Article  PubMed  CAS  Google Scholar 

  • Ubezio P, Civoli F. Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells. Free Radic Biol Med. 1994;16(4):509–16.

    Article  PubMed  CAS  Google Scholar 

  • Van Wauwe J, Goossens J. Effects of antioxidants on cyclooxygenase and lipoxygenase activities in intact human platelets: comparison with indomethacin and ETYA. Prostaglandins. 1983;26(5):725–30.

    Article  PubMed  Google Scholar 

  • Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Ligue Nationale Contre le Cancer (comité des Yvelines).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Rincheval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rincheval, V., Bergeaud, M., Mathieu, L. et al. Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death. Cell Biol Toxicol 28, 239–253 (2012). https://doi.org/10.1007/s10565-012-9219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9219-9

Keywords

Navigation