Skip to main content
Log in

Betel nut extract and arecoline block insulin signaling and lipid storage in 3T3-L1 adipocytes

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

According to several population-based studies, betel nut chewing is associated with metabolic syndrome and diabetes in British South Asians and Taiwanese. However, the underlying molecular mechanism is not yet clear. Arecoline is an alkaloid-type natural product found in betel nuts. Our aim was to clarify the influence of betel nut extract and arecoline on lipid accumulation and insulin signaling in adipocytes. We found that betel nut extract and arecoline blocked lipid storage in 3T3-L1 adipocytes. The possible mechanism may function by inhibiting the expression of the insulin receptor, glucose transporter-4, fatty acid synthase, and the lipid droplet proteins perilipin and adipophilin. In addition, betel nut extract and arecoline increased the basal level of IRS-1 serine307 phosphorylation and decreased insulin-stimulated IRS-1 tyrosine, Akt, and PI3 kinase phosphorylation. In conclusion, betel nut extract and arecoline have diabetogenic potential on adipocytes that may result in insulin resistance and diabetes at least in part via the obstruction of insulin signaling and the blockage of lipid storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.

    Article  PubMed  CAS  Google Scholar 

  • Ailhaud G. Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biol. 2006;329:570–7.

    Article  PubMed  CAS  Google Scholar 

  • Arioglu E, Rother KI, Reitman ML, Premkumar A, Taylor SI. Lipoatrophy syndromes: when ‘too little fat’ is a clinical problem. Pediatr Diabetes. 2000;1:155–68.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin AL. Community screening for diabetes in the National Capital District, Papua New Guinea: is betelnut chewing a risk factor for diabetes. PNG Med J. 2001;44:101–7.

    CAS  Google Scholar 

  • Benjamin AL, Margis D. Betel nut chewing: a contributing factor to the poor glycaemic control in diabetic patients attending Port Moresby General Hospital, Papua New Guinea. PNG Med J. 2005;48:174–82.

    Google Scholar 

  • Bhonsle RB, Murti PR, Gupta PC. Tobacco habits in India. In: Gupta PC, Hammer JE, Murti PR, editors. Control of tobacco-related cancers and other diseases. Bombay: Oxford University Press; 1992. p. 25–6.

    Google Scholar 

  • Boucher BJ, Mannan N. Metabolic effects of the consumption of Areca catechu. Addict Biol. 2002;7:103–10.

    Article  PubMed  CAS  Google Scholar 

  • Boucher BJ, Ewen SW, Stowers JM. Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring. Diabetologia. 1994;37:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem. 2000;275:38486–93.

    Article  PubMed  CAS  Google Scholar 

  • Chang WC, Hsiao CF, Chang HY, Lan TY, Hsiung CA, Shih YT, et al. Betel nut chewing and other risk factors associated with obesity among Taiwanese male adults. Int J Obes (Lond). 2006;30:359–63.

    Article  CAS  Google Scholar 

  • Croucher R, Islam S. Socio-economic aspects of areca nut use. Addict Biol. 2002;7:139–46.

    Article  PubMed  CAS  Google Scholar 

  • DeClercq V, Taylor C, Zahradka P. Adipose tissue: the link between obesity and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 2008;8:228–37.

    Article  PubMed  CAS  Google Scholar 

  • Dubois SG, Heilbronn LK, Smith SR, Albu JB, Kelley DE, Ravussin E. Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity (Silver Spring). 2006;14:1543–52.

    Article  CAS  Google Scholar 

  • Eckel RH, Grundy SM, Zimmet PZ. The metabolism syndrome. Lancet. 2005;365:1415–28.

    Article  PubMed  CAS  Google Scholar 

  • Foran PG, Fletcher LM, Oatey PB, Mohammed N, Dolly JO, Tavare JM. Protein kinase B stimulates the translocation of GLUT4 but not GLUT1 or transferrin receptors in 3T3-L1 adipocytes by a pathway involving SNAP-23, synaptobrevin-2, and/or cellubrevin. J Biol Chem. 1999;274:28087–95.

    Article  PubMed  CAS  Google Scholar 

  • Guh JY, Chuang LY, Chen HC. Betel-quid use is associated with the risk of the metabolic syndrome in adults. Am J Clin Nutr. 2006;83:1313–20.

    PubMed  CAS  Google Scholar 

  • Guilherme A, Virbasius JV, Puri V, Michael P, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    Article  PubMed  CAS  Google Scholar 

  • Gupta PC, Warnakulasuriya S. Global epidemiology of areca nut usage. Addict Biol. 2002;7:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Heid HW, Moll R, Schwetlick I, Rackwitz H, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res. 1998;294:309–21.

    Article  PubMed  CAS  Google Scholar 

  • Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL. A role for protein kinase B/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol. 1999;19:7771–81.

    PubMed  CAS  Google Scholar 

  • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  PubMed  CAS  Google Scholar 

  • Hsu HF, Tsou TC, Chao HR, Shy CG, Kuo YT, Tsai FY, et al. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome. Toxicol Appl Pharmacol. 2010;245:370–7.

    Article  PubMed  CAS  Google Scholar 

  • Huang-Doran I, Sleigh A, Rochford JJ, O’Rahilly S, Savage DB. Lipodystrophy: metabolic insights from a rare disorder. J Endocrinol. 2010;207:245–55.

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama M, Shiga M, Sasamoto K, Mizoguchi M, He PG. A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull. 1993;41:1118–22.

    CAS  Google Scholar 

  • Jeng JH, Kuo ML, Hahn LJ, Kuo MY. Genotoxic and nongenotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res. 1994;73:1043–9.

    PubMed  CAS  Google Scholar 

  • Kinkel AD, Fernyhough ME, Helterline DL, Vierck JL, Oberg KS, Vance TJ, et al. Oil red-O stains non-adipogenic cells: a precautionary note. Cytotechnology. 2004;46:49–56.

    Article  PubMed  Google Scholar 

  • Larigauderie G, Cuaz-Perolin C, Younes AB, Furman C, Lasselin C, Copin C, et al. Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of β-oxidation. FEBS J. 2006;273:3498–510.

    Article  PubMed  CAS  Google Scholar 

  • Laustsen PG, Michael MD, Crute BE, Cohen SE, Ueki K, Kulkarni RN, et al. Lipoatrophic diabetes in Irs1−/−/Irs3−/− double knockout mice. Genes Dev. 2002;16:3213–22.

    Article  PubMed  CAS  Google Scholar 

  • Lin WY, Pi-Sunyer FX, Liu CS, Li TC, Li CI, Huang CY, et al. Betel nut chewing is strongly associated with general and central obesity in Chinese male middle-aged adults. Obesity (Silver Spring). 2009;17:1247–54.

    CAS  Google Scholar 

  • Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol. 1999;10:51–8.

    Article  PubMed  CAS  Google Scholar 

  • Mannan N, Boucher BJ, Evans SJ. Increased waist size and weight in relation to consumption of Areca catechu (betel-nut); a risk factor for increased glycaemia in Asians in east London. Br J Nutr. 2000;83:267–75.

    PubMed  CAS  Google Scholar 

  • Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, et al. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem. 2002;277:32253–7.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Souza SC, Endo M, Sawada T, Perfield JW, Shimizu C, et al. Perilipin overexpression in mice protects against diet-induced obesity. J Lipid Res. 2010;51:975–82.

    Article  PubMed  CAS  Google Scholar 

  • Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, et al. Life without white fat: a transgenic mouse. Genes Dev. 1998;12:3168–81.

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci. 1999;3:109–15.

    Article  Google Scholar 

  • Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr. 2000;130:3122S–6.

    PubMed  CAS  Google Scholar 

  • Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346:570–8.

    Article  PubMed  CAS  Google Scholar 

  • Park KW, Halperin DS, Tontonoz P. Before they were fat: adipocyte progenitors. Cell Metab. 2008;8:454–7.

    Article  PubMed  CAS  Google Scholar 

  • Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, et al. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272:29911–8.

    Article  PubMed  CAS  Google Scholar 

  • Racher AJ, Looby D, Griffiths JB. Use of lactate dehydrogenase release to assess changes in culture viability. Cytotechnology. 1990;3:301–7.

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444:847–53.

    Google Scholar 

  • Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, et al. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001;107:181–9.

    Article  PubMed  CAS  Google Scholar 

  • Saha PK, Kojima H, Martinez-Botas J, Sunehag AL, Chan L. Metabolic adaptations in the absence of perilipin: increased beta-oxidation and decreased hepatic glucose production associated with peripheral insulin resistance but normal glucose tolerance in perilipin-null mice. J Biol Chem. 2004;279:35150–8.

    Article  PubMed  CAS  Google Scholar 

  • Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    Article  PubMed  CAS  Google Scholar 

  • Sethi JK, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? Trends Mol Med. 2005;11:344–7.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998;12:3182–94.

    Article  PubMed  CAS  Google Scholar 

  • Smas CM, Kachinskas D, Liu CM, Xie X, Dircks LK, Sul HS. Transcriptional control of the pref-1 gene in 3T3-L1 adipocyte differentiation. Sequence requirement for differentiation-dependent suppression. J Biol Chem. 1998;273:31751–8.

    Article  PubMed  CAS  Google Scholar 

  • Souza SC, Muliro KV, Liscum L, Lien P, Yamamoto MT, Schaffer JE, et al. Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system. J Biol Chem. 2002;277:8267–72.

    Article  PubMed  CAS  Google Scholar 

  • Sovik O, Vestergaard H, Trygstad O, Pedersen O. Studies of insulin resistance in congenital generalized lipodystrophy. Acta Paediatr Suppl. 1996;413:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Stowers JM, Ewen SBW. Possible dietary factors in the induction of diabetes and its inheritance in man, with studies in mice. Proc Nutr Soc. 1991;50:287–98.

    Article  PubMed  CAS  Google Scholar 

  • Sul HS, Smas C, Mei B, Zhou L. Function of pref-1 as an inhibitor of adipocyte differentiation. Int J Obes. 2000;24:S15–9.

    Article  CAS  Google Scholar 

  • Tansey JT, Huml AM, Vogt R, Davis KE, Jones JM, Fraser KA, et al. Functional studies on native and mutated forms of perilipins: a role in protein kinase A-mediated lipolysis of triacylglycerols. J Biol Chem. 2003;278:8401–6.

    Article  PubMed  CAS  Google Scholar 

  • The DECODA Study Group. Prevalence of the metabolic syndrome in populations of Asian origin: comparison of the IDF definition with the NCEP definition. Diabetes Res Clin Pr. 2007;76:57–67.

    Article  Google Scholar 

  • Tung TH, Chiu YH, Chen LS, Wu HM, Boucher BJ, Chen TH. A population-based study of the association between areca nut chewing and type 2 diabetes mellitus in men (Keelung Community-based Integrated Screening programme No. 2). Diabetologia. 2004;47:1776–81.

    Article  PubMed  Google Scholar 

  • Vázquez-Vela MEF, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Archives of Medical Research. 2008;39:715–28.

    Article  PubMed  Google Scholar 

  • Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21:697–738.

    Article  PubMed  CAS  Google Scholar 

  • Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol. 2007;2:31–56.

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE. S3-12, adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem. 2005;280:19146–55.

    Article  PubMed  CAS  Google Scholar 

  • Wu IC, Lu CY, Kuo FC, Tsai SM, Lee KW, Kuo WR, et al. Interaction between cigarette, alcohol and betel nut use on esophageal cancer risk in Taiwan. Eur J Clin Invest. 2006;36:236–41.

    Article  PubMed  CAS  Google Scholar 

  • Yen AM, Chiu YH, Chen LS, Wu HM, Huang CC, Boucher BJ, et al. A population-based study of the association between betel-quid chewing and the metabolic syndrome in men. Am J Clin Nutr. 2006;83:1153–60.

    PubMed  CAS  Google Scholar 

  • Zhang X, Reichart PA. A review of betel quid chewing, oral cancer and precancer in Mainland China. Oral Oncol. 2007;43:424–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Center of Excellence for Environmental Medicine (KMU-EM-97-1.3.f) and the Medical Research Fund (QM094009 and QM094011) of Kaohsiung Medical University, Taiwan, Republic of China. We also thank Elsevier’s Webshop for the language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Jang Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 41 kb)

High resolution image (TIFF 1470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, TJ., Hsieh, PC., Wu, MT. et al. Betel nut extract and arecoline block insulin signaling and lipid storage in 3T3-L1 adipocytes. Cell Biol Toxicol 27, 397–411 (2011). https://doi.org/10.1007/s10565-011-9195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-011-9195-5

Keywords

Navigation