Skip to main content
Log in

Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Aluminum is a metal that is known to impact fish species. The zebrafish has been used as an attractive model for toxicology and behavioral studies, being considered a model to study environmental exposures and human pathologies. In the present study, we have investigated the effect of aluminum exposure on brain acetylcholinesterase activity and behavioral parameters in zebrafish. In vivo exposure of zebrafish to 50 μg/L AlCl3 for 96 h at pH 5.8 significantly increased (36%) acetylthiocholine hydrolysis in zebrafish brain. There were no changes in acetylcholinesterase (AChE) activity when fish were exposed to the same concentration of AlCl3 at pH 6.8. In vitro concentrations of AlCl3 varying from 50 to 250 μM increased AChE activity (28% to 33%, respectively). Moreover, we observed that animals exposed to AlCl3 at pH 5.8 presented a significant decrease in locomotor activity, as evaluated by the number of line crossings (25%), distance traveled (14.1%), and maximum speed (24%) besides an increase in the absolute turn angle (12.7%). These results indicate that sublethal levels of aluminum might modify behavioral parameters and acetylcholinesterase activity in zebrafish brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

References

  • Allin C, Wilson R. Behavioural and metabolic effects of chronic exposure to sublethal aluminum in acidic soft water in juvenile rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci. 1999;56:670–8.

    Article  CAS  Google Scholar 

  • Amsterdam A, Hopkins N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 2006;22(9):473–8.

    Article  PubMed  CAS  Google Scholar 

  • Behra M, Cousin X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci. 2002;5(2):111–8.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand C, Chatonnet A, Takke C, Yan Y, Postlethwait J, Toutant J, et al. Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7 gene structure and polymorphism; molecular forms and expression pattern during development. J Biol Chem. 2001;276:464–74.

    Article  PubMed  CAS  Google Scholar 

  • Best JD, Alderton WK. Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat. 2008;4(3):567–76.

    PubMed  CAS  Google Scholar 

  • Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:218–54.

    Article  Google Scholar 

  • Brodeur J, Økland F, Finstad B, George Dixon D, Scott McKinley R. Effects of subchronic exposure to aluminium in acidic water on bioenergetics of Atlantic salmon (Salmo salar). Ecotoxicol Environ Saf. 2001;49:226–34.

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  PubMed  CAS  Google Scholar 

  • Flaten T. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull. 2001;55:187–96.

    Article  PubMed  CAS  Google Scholar 

  • Finn RN. The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat Toxicol. 2007;81:337–54.

    Article  PubMed  CAS  Google Scholar 

  • Gensemer RW, Playle RC. The bioavailability and toxicity of aluminium in aquatic environments. Crit Rev Environ Sci Technol. 1999;29:315–40.

    Article  CAS  Google Scholar 

  • Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav. 2000;67:773–82.

    Article  PubMed  CAS  Google Scholar 

  • Gulya K, Rakonczay Z, Kasa P. Cholinotoxic effects of aluminum in rat brain. J Neurochem. 1990;54:1020–6.

    Article  PubMed  CAS  Google Scholar 

  • Guo S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav. 2004;3(2):63–74.

    Article  PubMed  CAS  Google Scholar 

  • Hetnarski B, Wisniewski H, Iqbal K, Dziedzic J, Lajtha A. Central cholinergic activity in aluminum-induced neurofibrillary degeneration. Ann Neurol. 1980;7:489–90.

    Article  PubMed  CAS  Google Scholar 

  • Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, et al. Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem. 2005;99(9):1865–70.

    Article  PubMed  CAS  Google Scholar 

  • Krens S, He S, Spaink H, Snaar-Jagalska B. Characterization and expression patterns of the MAPK family in zebrafish. Gene Express Patt. 2006;6:1019–26.

    Article  CAS  Google Scholar 

  • Kumar S. Biphasic effect of aluminium on cholinergic enzyme of rat brain. Neurosci Lett. 1998;248:121–3.

    Article  PubMed  CAS  Google Scholar 

  • Monette M, McCormick S. Impacts of short-term acid and aluminum exposure on Atlantic salmon (Salmo salar) physiology: a direct comparison of parr and smolts. Aquat Toxicol. 2008;86:216–26.

    Article  PubMed  CAS  Google Scholar 

  • Naravaneni R, Jamil K. Determination of AChE levels and genotoxic effects in farmers occupationally exposed to pesticides. Hum Exp Toxicol. 2007;26(9):723–31.

    Article  PubMed  CAS  Google Scholar 

  • Newman M, Musgrave IF, Lardelli M. Alzheimer disease: amyloidogenesis, the presenilins and animal models. Biochim Biophys Acta. 2007;1772(3):285–97.

    PubMed  CAS  Google Scholar 

  • Oteiza P, Fraga C, Keen C. Aluminum has both oxidant and antioxidant effects in mouse brain membranes. Arch Biochem Biophysi. 1993;300:517–21.

    Article  CAS  Google Scholar 

  • Peng J, Xu Z, Xu Z, Parker J, Friedlander E, Tang J, et al. Aluminium-induced acute cholinergic neurotoxicity in rat. Mol Chem Neuropathol. 1992;17:79–89.

    Article  PubMed  CAS  Google Scholar 

  • Pepeu G, Giovannini M. Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem. 2004;11:21–7.

    Article  PubMed  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, et al. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 2000;10(12):1890–902.

    Article  PubMed  CAS  Google Scholar 

  • Rico EP, Rosemberg DB, Senger MR, Arizi MB, Bernardi GF, Dias RD, et al. Methanol alters ecto-nucleotidases and acetylcholinesterase in zebrafish brain. Neurotoxicol Teratol. 2006;28(4):489–96.

    Article  PubMed  CAS  Google Scholar 

  • Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF. Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol. 2009;169(4):489–96.

    Article  PubMed  Google Scholar 

  • Roufogalis B, Wickson V. Acetylcholinesterase specific inactivation of allosteric effects by a water-soluble carbodiimide. J Biol Chem. 1973;248:2254–6.

    PubMed  CAS  Google Scholar 

  • Sarkarati B, Çokugras A, Tezcan E. Inhibition kinetics of human serum butyrylcholinesterase by Cd2+, Zn2+ and Al3+: comparison of the effects of metal ions on cholinesterases. Comp Biochem Physiol C. 1999;122:181–90.

    PubMed  CAS  Google Scholar 

  • Senger MR, Rico EP, Arizi MB, Rosemberg DB, Dias RD, Bogo MR, et al. Carbofuran and malathion inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes. Toxicol. 2005;212:107–15.

    Article  CAS  Google Scholar 

  • Senger MR, Rosemberg DB, Rico EP, de Bem Arizi M, Dias RD, Bogo MR, et al. In vitro effect of zinc and cadmium on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol Vitro. 2006;20:954–8.

    Article  CAS  Google Scholar 

  • Shcherbatykh I, Carpenter DO. The role of metals in the etiology of Alzheimer's disease. J Alzheimers Dis. 2007;11(2):191–205.

    PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci. 2001;2(4):294–302.

    Article  PubMed  CAS  Google Scholar 

  • Waring C, Brown J, Collins J, Prunet P. Plasma prolactin, cortisol, and thyroid responses of the brown trout (Salmo trutta) exposed to lethal and sublethal aluminium in acidic soft waters. Gen Comp Endocrinol. 1996;102:377–85.

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). 4th ed. Eugene: University of Oregon Press; 2000.

    Google Scholar 

  • Williams FE, Messer Jr WS. Muscarinic acetylcholine receptors in the brain of the zebrafish (Danio rerio) measured by radioligand binding techniques. Comp Biochem Physiol C. 2004;137(4):349–53.

    Google Scholar 

  • Zatta P, Ibn-Lkhayat-Idrissi M, Zambenedetti P, Kilyen M, Kiss T. In vivo and in vitro effects of aluminum on the activity of mouse brain acetylcholinesterase. Brain Res Bull. 2002;59:41–5.

    Article  PubMed  CAS  Google Scholar 

  • Zatta P, Zambenedetti P, Bruna V, Filippi B. Activation of acetylcholinesterase by aluminium (III): the relevance of the metal species. NeuroReport. 1994;5:1777.

    Article  PubMed  CAS  Google Scholar 

  • Zirger JM, Beattie CE, McKay DB, Boyd RT. Cloning and expression of zebrafish neuronal nicotinic acetylcholine receptors. Gene Expr Patt. 2003;3(6):747–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DECIT/SCTIEMS through Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Proc. 10/0036-5–PRONEX/Conv. 700545/2008), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and by the FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)” # 01.06.0842-00. M.R.S was the recipient of a fellowship PAPDRJ–CAPES/FAPERJ. G.C.G was the recipient of a fellowship from FAPERGS. K.J.S was the recipient of a fellowship from PROBOLSAS/PUCRS.

Conflict of interest statement

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Denise Bonan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senger, M.R., Seibt, K.J., Ghisleni, G.C. et al. Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain. Cell Biol Toxicol 27, 199–205 (2011). https://doi.org/10.1007/s10565-011-9181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-011-9181-y

Keywords

Navigation