Skip to main content
Log in

In vitro effect of malathion and diazinon on oocytes fertilization and embryo development in porcine

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Diazinon and malathion are commonly used organophosphate insecticides in agriculture, industry, and in veterinary medicine as an ectoparasiticide. The importance to carry out in vitro reproductive toxicology assays lies on the need of knowing the alterations these insecticides may cause at cellular level, since they are endocrine disruptors that interfere with reproductive functions. The aim of this study was to evaluate in vitro oocyte viability, fertilization, and embryo development with different concentrations of diazinon and malathion. For in vitro fertilization (IVF), porcine oocytes and sperm were co-incubated for 7 h with increasing concentrations (50, 100, and 500 μM) of diazinon and malathion. For embryo development, fertilized oocytes were cultured in medium containing the same insecticide concentrations during 96 h for embryo development and 144 h for morulae formation. Diazinon did not affect oocyte viability and embryo divisions but decreased IVF (fertilization inhibition50 = 502 μM) and morulae formation (morulae inhibition50 = 344 μM). Malathion affected all the studied parameters: lethal concentration50 = 1 mM, fertilization inhibition50 = 443 μM, development inhibition50 = 375 μM, and morulae inhibition50 = 216 μM. The results of this study indicate that diazinon and malathion used in commercial formulation could be toxic, producing impairment in in vitro fertilization and embryo development. This is an approach for further investigations to find out cell damage mechanisms produced by these widely used insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DI50 :

Development inhibition50

DPBS:

Dulbecco phosphate-buffered solution

EPA:

Environmental Protection Agency

FI50 :

Fertilization inhibition50

FSH:

Follicle stimulating hormone

HEPES:

N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid

IVF:

In vitro fertilization

IVM:

In vitro maturation

LC50 :

Lethal concentration50

LH:

Luteinizing hormone

MI50 :

Morulae inhibition50

mTBM:

Modified Tris-buffered medium

MTT:

Thiazolyl blue

NCSU-23:

North Carolina State University-23 medium

OP:

Organophosphates

PVA:

Polyvinyl alcohol

TCM 199:

Tissue culture medium 199

TL–HEPES–PVA:

Tyrode solution supplemented with HEPES, sodium lactate, and PVA

References

  • Abeydeera RL, Wang W, Prather RS, Day BN. Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol Reprod. 1998;58:316–20. doi:10.1095/biolreprod58.2.316.

    Article  Google Scholar 

  • Altamirano-Lozano M, Camacho-Manzanilla M, Loyola-Álvarez R, Roldán-Reyes E. Mutagenic and teratogenic effects of diazinon. Rev Int Contam Ambient (Mexico). 1989;5:49–58.

    Google Scholar 

  • Aluigi MG, Angelini C, Falugi C, Fossa R, Genever P, Gallus L, et al. Interaction between organophosphate compounds and cholinergic functions during development. Chem Biol Interact. 2005;157–158:305–16. doi:10.1016/j.cbi.2005.10.037.

    Article  PubMed  CAS  Google Scholar 

  • Aluigi MG, Angelini C, Corte G, Falugi C. The sea urchin, Paracentrotus lividus, embryo as a “bioethical” model for neurodevelopmental toxicity testing: effects of diazinon on the intracellular distribution of OTX2-like proteins. Cell Biol Toxicol. 2008;24:587–601.

    Article  PubMed  CAS  Google Scholar 

  • Aquila S, Sisci D, Gentile M, Middea E, Catalano S, Carpino A, et al. Strogen receptor ER alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway. J Clin Endocrinol Metab. 2004;80:1443–51. doi:10.1210/jc.2003-031681.

    Article  CAS  Google Scholar 

  • Baccetti B, Burrini AG, Collodel G, Falugi G, Moretti E, Piomboni P. Localisation of to classes of acetylcholine receptor-like molecule in sperm of different animal species. Zygote. 1995;3:207–17. doi:10.1017/S0967199400002604.

    Article  PubMed  CAS  Google Scholar 

  • Berger T, Horner MC. In vivo exposure of female rats to toxicants may affect oocyte quality. Reprod Toxicol. 2003;17:273–81. doi:10.1016/S0890-6238(03)00009-1.

    Article  PubMed  CAS  Google Scholar 

  • Betancourt M, Reséndiz A, Casas E, Fierro R. Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA) in vitro. Reprod Toxicol. 2006;22:508–12. doi:10.1016/j.reprotox.2006.03.001.

    Article  PubMed  CAS  Google Scholar 

  • Blasiak J, Jaloszynski P, Treciak A, Szyfter K. In vitro studies on the genotoxicity of the organophosphorus insecticide malathion and its two analogues. Mutat Res. 1999;445:275–83.

    PubMed  CAS  Google Scholar 

  • Bonilla E, Hernández F, Cortés L, Mendoza M, Mejía J, Carrillo E, et al. Effects of the insecticides malathion and diazinon on the early oogenesis in mice in vitro. Environ Toxicol. 2008;23:240–5. doi:10.1002/tox.20332.

    Article  PubMed  CAS  Google Scholar 

  • Brevini TAL, Cillo F, Antonini S, Gandolfi F. Effects of endocrine disrupters on the oocytes and embryos of farm animals. Reprod Domest Anim. 2005;40:291–9. doi:10.1111/j.1439-0531.2005.00592.x.

    Article  PubMed  CAS  Google Scholar 

  • Bustos-Obregón E, González-Hormazabal P. Effect of a single dose of malathion on spermatogenesis in mice. Asian J Androl. 2003;5:105–7.

    PubMed  Google Scholar 

  • Bustos-Obregón E, Yucra S, González GF. Lepididium meyenii (Maca) reduces spermatogenic damage induced by a single dose of malathion in mice. Asian J Androl. 2005;7:71–6.

    Article  PubMed  Google Scholar 

  • Buznikov GA, Nikitina LA, Rakic LM, Milosevic I, Bezuglov VV, Lauder JM, et al. The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiples neurotransmitter mechanisms for effects of chlorpyrifos: therapeutic intervention and a comparison with the monoamine recerpine. Brain Res Bull. 2007;74:221–31. doi:10.1016/j.brainresbull.2007.06.012.

    Article  PubMed  CAS  Google Scholar 

  • Campagna C, Sirard MA, Ayotte P, Bailey JL. Impaired maturation, fertilization and embryonic development of porcine oocyte following exposure to an environmentally relevant organochlorine mixture. Biol Reprod. 2001;65:554–60. doi:10.1095/biolreprod65.2.554.

    Article  PubMed  CAS  Google Scholar 

  • Campagna C, Guillemette C, Sirard MA, Ayotte P, Bailey JL. An environmentally relevant organochlorine mixture impairs sperm function and embryo development in the porcine model. Biol Reprod. 2002;67:80–7. doi:10.1095/biolreprod67.1.80.

    Article  PubMed  CAS  Google Scholar 

  • Campagna C, Ayotte P, Sirard MA, Bailey JL. An environmentally relevant mixture of organochlorines, their metabolites and effects on preimplantation development of porcine embryos. Reprod Toxicol. 2008;25:361–6. doi:10.1016/j.reprotox.2008.03.003.

    Article  PubMed  CAS  Google Scholar 

  • Casida JE, Quistad GB. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets. Chem Res Toxicol. 2004;17:983–98. doi:10.1021/tx0499259.

    Article  PubMed  CAS  Google Scholar 

  • Casida JE, Quistad GB. Serine hydrolases targets of organophosphorus toxicants. Chem Biol Interact. 2005;157–158:277–83. doi:10.1016/j.cbi.2005.10.036.

    Article  PubMed  CAS  Google Scholar 

  • Cavieres MF. Pesticides exposure and reproductive and birth defect. Critical analysis of epidemiological and experimental evidence. Rev Med Chile 2004;132:873–9.

    PubMed  Google Scholar 

  • Contreras HR, Bustos-Obregón E. Morphological alterations in mouse testis by a single dose of malathion. J Exp Zool. 1999;284:355–9. doi:10.1002/(SICI)1097-010X(19990801)284:3<355::AID-JEZ13>3.0.CO;2-N.

    Article  PubMed  CAS  Google Scholar 

  • Dutta HM, Maxwell LB. Histological examination of sublethal effects of diazinon on ovary of bluegill, Leptomis macrochirus. Environ Pollut. 2003;121:95–102. doi:10.1016/S0269-7491(02)00201-4.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer A. Pesticide poisoning. An Sist Sanit Navar. 2003;26:155–71.

    PubMed  Google Scholar 

  • Giordano G, Afsharinejad Z, Guizzetti M, Vitalone A, Kavanagh TJ, Costa LG. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol Appl Pharmacol. 2007;219:181–9. doi:10.1016/j.taap.2006.09.016.

    Article  PubMed  CAS  Google Scholar 

  • Giri S, Prasad SB, Giri A, Sharma GD. Genotoxic effects of malathion: an organophosphorus insecticide, using three mammalian bioassays in vivo. Mutat Res. 2002;514:223–31.

    PubMed  CAS  Google Scholar 

  • Greenlee AR, Ellis TM, Berg RL. Low-dose agrochemicals and lawn-care pesticides induce developmental toxicity in murine preimplantation embryos. Environ Health Perspect. 2004;112:703–9.

    PubMed  CAS  Google Scholar 

  • Hamm JT, Hinton DE. The role of development and duration of exposure to the embryotoxicity of diazinon. Aquat Toxicol. 2000;48:403–18. doi:10.1016/S0166-445X(99)00065-X.

    Article  PubMed  CAS  Google Scholar 

  • Hamlin GP, Kholkute S, Dukelow WR. Toxicology of maternally ingested carbon tetrachloride (CCl4) on embryonal and fetal development and in vitro fertilization in mice. Zool Sci. 1993;10:111–6.

    CAS  Google Scholar 

  • Jokanovic M. Biotransformation of organophosphorus compounds. Toxicology. 2001;166:139–60. doi:10.1016/S0300-483X(01)00463-2.

    Article  PubMed  CAS  Google Scholar 

  • Kalender S, Ogutcu A, Uzunhisarcikli M, Acikgoz F, Durak D, Ulusoy Y, et al. Diazinon-induce hepatotoxicity and protective affect of vitamin E on some biochemical indices and ultrastructural changes. Toxicology. 2005;211:197–206. doi:10.1016/j.tox.2005.03.007.

    Article  PubMed  CAS  Google Scholar 

  • Kamarianos A, Karamanlis X, Goulsd P, Theodosiadou E, Smokovitis A. The presence of environmental pollutants in the follicular fluid of farm animals (cattle, sheep, goats, and pigs). Reprod Toxicol. 2003;17:185–90. doi:10.1016/S0890-6238(02)00118-1.

    Article  PubMed  CAS  Google Scholar 

  • Kholkute S, Rodriguez J, Dukelow WR. Reproductive toxicity of aroclor-1254: effects on oocyte, spermatozoa, in vitro fertilization, and embryo development in the mouse. Reprod Toxicol. 1994;8:487–93. doi:10.1016/0890-6238(94)90031-0.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi H, Yamaguchi N, Hattori M, Ishikawa T, Aoki J, Taketo MM, Inoue K, Arai K. Targeted disruption of intracellular type I platelet activating factor-acetylhydrolase catalytic subunits causes severe impairment in spermatogenesis. J Biol Chem. 2003;278:12489–94. doi:10.1074/jbc.M211836200.

    Article  PubMed  CAS  Google Scholar 

  • Krogenaes A, Nafstad I, Skare JU, Farstad W, Hafne AL. In vitro reproductive toxicity of polychlorinated biphenyl congeners 153 and 126. Reprod Toxicol. 1998;12:575–80. doi:10.1016/S0890-6238(98)00040-9.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell LB, Dutta HM. Diazinon-induced endocrine disruption in bluegill sunfish, Leptomis macrochirus. Ecotoxicol Environ Saf. 2005;60:21–7. doi:10.1016/j.ecoenv.2003.12.015.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan JA. Environmental signaling: what embryo and evolution teach us about endocrine disrupting chemicals. Endocr Rev. 2001;22:319–41. doi:10.1210/er.22.3.319.

    Article  PubMed  CAS  Google Scholar 

  • Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4.

    Article  Google Scholar 

  • Oettling G, Schmidt H, Drews U. An embryonic Ca++ mobilizing muscarinic system in the chick embryo heart. J Dev Physiol. 1989;2:85–94.

    Google Scholar 

  • Osterauer R, Köhler HR. Temperature-dependent effect of the pesticide thiacloprid and diazinon on the embryonic development of zebra fish (Danio rerio). Aquat Toxicol. 2008;86:485–94. doi:10.1016/j.aquatox.2007.12.013.

    Article  PubMed  CAS  Google Scholar 

  • Pesando D, Huitorel P, Dolcini V, Angelini C, Guidetti P, Falugi C. Biological targets of neurotoxic pesticides analised by alteration of developmental events in the Mediterranean sea urchin Paracentrotus lividus. Mar Environ Res. 2003;55:39–57. doi:10.1016/S0141-1136(02)00215-5.

    Article  PubMed  CAS  Google Scholar 

  • Petters RM, Wells KD. Culture of pig embryos. J Reprod Fertil Suppl. 1993;48:61–73.

    PubMed  CAS  Google Scholar 

  • Piña-Guzmán B, Solis-Heredia MJ, Quintanilla-Vega B. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines. Toxicol Appl Pharmacol. 2005;202:189–98. doi:10.1016/j.taap.2004.06.028.

    Article  PubMed  CAS  Google Scholar 

  • Pluth JM, Nicklas JA, O’Neill JP, Albertini RJ. Increased frequency of specific genomic deletions resulting from in vitro malathion exposure. Cancer Res. 1996;56:2393–9.

    PubMed  CAS  Google Scholar 

  • Pocar P, Brevini TA, Fischer B, Gandolfi F. The impact of endocrine disruptors on oocyte competence. Reproduction. 2003;125:313–25. doi:10.1530/rep.0.1250313.

    Article  PubMed  CAS  Google Scholar 

  • Prakash N, Venkatesh U. Human chorionic gonadotrophin (hcG) protects malathion induced plasma luteinizing hormone and testosterone changes in rats. Indian J Pharmacol. 1996;28:257–60.

    CAS  Google Scholar 

  • Solakidi S, Psarra AMG, Nikolaropoulos S, Sekeris CE. Estrogen receptors α and β (ERα and ERβ) and androgen receptor (AR) in human sperm: localization of ERβ and AR in mitochondria of the midpiece. Hum Reprod. 2005;20:3481–7. doi:10.1093/humrep/dei267.

    Article  PubMed  CAS  Google Scholar 

  • Tiemann U. In vivo and in vitro effects on the organochlorine pesticides DDT, TCPM, methoxychlor, and lindane on the female reproductive tract of mammals: a review. Reprod Toxicol. 2008;25:316–26. doi:10.1016/j.reprotox.2008.03.002.

    Article  PubMed  CAS  Google Scholar 

  • Salazar Z, Ducolomb Y, Betancourt M, Bonilla E, Cortés L, Hernández-Hernández F, et al. Gene expression analysis on the early development of pig embryos exposed to malathion. Int J Toxicol. 2007;26:143–9. doi:10.1080/10915810701226263.

    Article  PubMed  CAS  Google Scholar 

  • Sebe A, Salim S, Rana A, Nalan K, Hilal A. Organophosphate poisoning associated with fetal death. Mt Sinai J Med. 2005;72:354–6.

    PubMed  Google Scholar 

  • Sheffield SR, Lochmiller RL. Effects of field exposure to diazinon on small mammals inhabiting a semiclosed prairie grassland ecosystem. I. Ecological and reproductive effects. Environ Toxicol Chem 2001;20:284–96. doi:10.1897/1551-5028(2001)020<0284:EOFETD>2.0.CO;2.

    Article  PubMed  CAS  Google Scholar 

  • US EPA. National Pesticide Information Center. 2000: Washington DC: US Environmental Protection Agency.

  • Videira RA, Antunes-Madeira MC, Lopes V, Madeira V. Changes induced by malathion, metilparathion and parathion on membrane lipid physicochemical properties correlate with their toxicity. Biochim Biophys Acta. 2001;1511:360–8. doi:10.1016/S0005-2736(01)00295-4.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Niwa K. Synergetic effects of epidermal growth factor and gonadotropins on the cytoplasmic maturation of pig oocytes in a serum-free medium. Zygote. 1995;3:345–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by CONACYT (Mex), grant 5-37923-B. The authors are thankful to Filiberto Fernández for his collaboration in obtaining and analyzing the semen samples, Alicia Reséndiz for preparing the semen samples, and Los Arcos, Los Reyes, Mexico slaughterhouse for providing gilt ovaries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Betancourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducolomb, Y., Casas, E., Valdez, A. et al. In vitro effect of malathion and diazinon on oocytes fertilization and embryo development in porcine. Cell Biol Toxicol 25, 623–633 (2009). https://doi.org/10.1007/s10565-008-9117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-008-9117-3

Keywords

Navigation