Skip to main content
Log in

The effects of benzene exposure on apoptosis in epithelial lung cells: Localization by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and the immunocytochemical localization of apoptosis-related gene products

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Although benzene, a well-known human carcinogen, has been shown to induce apoptosis in vitro, no studies have been carried out to confirm and characterize its role in activating apoptosis in vivo. The present study investigated the effects of benzene inhalation on the epithelial cells lining the respiratory tract including bronchioles, terminal bronchioles, respiratory bronchioles and alveoli of male Sprague-Dawley rats. Inhalation of benzene 300 ppm for 7 days induced apoptotic changes in the parenchymal components in the lung that significantly exceeded the events of programmed cell death in normal control tissues. Apoptosis was confirmed by the electrophoretic analysis of internucleosomal DNA fragmentation of benzene-exposed lung tissues, which exhibited 180–200 bp laddering subunits indicative of genomic DNA degradation. Furthermore, semi-quantitative analysis of intracellular localization of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling TUNEL) showed a significant (p < 0.001) increase in the apoptotic index calculated for bronchiolar 73.5%, terminal bronchiolar (65%), and respiratory bronchiolar 60.8% segmental epithelial components as well as alveolar (55%) epithelia. Analysis of immunohistochemical expression of apoptosis-related gene products also supported the hypothesis that benzene can induce apoptosis in chemosensitive target cells in the lung parenchyma. Quantitative immunhistochemistry showed a statistically significant increase p < 0.001 in the immunoreactive staining index for cytochrome c, Apaf-1 (apoptosis activating factor-1), DNA fragmentation factor, and representative cysteine proteases including caspase-1, caspase-2L, caspase-8 and caspase-9. Thus this is the first study of the respiratory system that demonstrates that benzene inhalation induces lung cell apoptosis as confirmed by DNA electrophoresis, in situ nick end labeling, and the upregulation of apoptosis-related gene products that facilitate caspase-cleaved enzymes which lead to cell degradation via programmed cell death. These responses may represent an important defense mechanism within the parenchymal cells of the respiratory system that reduce mutational hazard and the potential carcinogenic effects of benzene-initiated pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Apaf-1:

apoptosis activating factor 1

ISI:

immunoreactive staining index

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling

References

  • Aksoy M. CRC benzene carcinogenicity. Boca Raton: CRC Press; 1988.

  • Aksoy M. Hematotoxicity and carcinogenicity of benzene. Environ Health Perspect. 1989;82:193–7.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit V. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  PubMed  CAS  Google Scholar 

  • Bratton SB, Lau SS, Monks TJ. The putative benzene metabolite 2,3,5-tris(glutathion-S-yl) hydroquinone depletes glutathione, stimulates sphingomyelin turnover, and induces apoptosis in HL-60 cells. Chem Res Toxicol. 2000;13:550–6.

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Sun X-M, Cohen G. Dexamethosone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J Biol Chem. 1993;268:3037–9.

    PubMed  CAS  Google Scholar 

  • Butt A, Harvey N, Parasivam G, Kumar S. Dimerization and autoprocessing of the Nedd2 (caspase-2) precursor requires both the prodomain and the carboxyl-terminal regions. J Biol Chem. 1998;273:6763–8.

    Article  PubMed  CAS  Google Scholar 

  • Casciola-Rosen L, Nicholson D, Chong T, Rowan K, Thornberry N, Miller D, Rosen A. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996;183:1957–64.

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000;64:821–46.

    Article  PubMed  CAS  Google Scholar 

  • Coffey R, Watson R, Fitzpatrick JM. Signaling for the caspases: their role in prostate cell apoptosis. J Urol. 2001;165:5–14.

    Article  PubMed  CAS  Google Scholar 

  • Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12:1551–70.

    PubMed  CAS  Google Scholar 

  • Darrall K, Figgins J, Brown R, Phillips G. Determination of benzene and associated volatile compounds in mainstream cigarette smoke. Analyst. 1998;123:1095-101.

    Google Scholar 

  • Donepudi M, Sweeney A, Briand C, Grutter M. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell. 2003;11:543–9.

    Article  PubMed  CAS  Google Scholar 

  • Duan H, Orth K, Chinnaiyan A, et al. ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J Biol Chem. 1996;271:16720–4.

    Google Scholar 

  • Eldadah B, Faden A. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma. 2000;17:811–29.

    PubMed  CAS  Google Scholar 

  • Fadeel B, Orrenius S, Zhivotovsky B. The most unkindest cut of all: on the multiple roles of mammalian caspases. Leukemia. 2000;14:1514–25.

    Article  PubMed  CAS  Google Scholar 

  • Goelz, S, Hamilton, S, Vogelstein, B. Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Commun. 1985;130:118–26.

    Article  PubMed  CAS  Google Scholar 

  • Gorman A, Orrenius S, Ceccatelli S. Apoptosis in neuronal cells: role of caspases. Neuroreport. 1998;9: R49–55.

    Google Scholar 

  • Green D, Reed J. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  • Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol. 2000;10:649–55.

    Article  PubMed  CAS  Google Scholar 

  • Hayes R, Yin S, Dosemeci M, et al. Mortality among benzene-exposed workers in China. Environ Health Perspect. 1996;104:1349–52.

    Google Scholar 

  • Hiraku Y, Kawanishi S, Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res 1996;56:5172–8.

    PubMed  CAS  Google Scholar 

  • Hoffman D, Melikian A, Wynder E. Scientific challenges in environmental carcinogenesis. Prev Med. 1996;25:14–22.

    Article  Google Scholar 

  • Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature. 1999;398:777–85.

    Article  PubMed  CAS  Google Scholar 

  • Johnson D. Noncaspase proteases in apoptosis. Leukemia. 2000;14:1695–703.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Bergeron L, Cryns V, et al. Activation of caspase-2 in apoptosis. J Biol Chem. 1997;272:21010–7.

    Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotoic protease cascade. Cell. 1997;91:479–89.

    Google Scholar 

  • Liu X, Kim C, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.

    Article  PubMed  CAS  Google Scholar 

  • Martins L, Mesner P, Kottke T, et al. Comparison of caspase activation and subcellar localization in HL-60 and K562 cells undergoing etoposide-induced apoptosis. Blood. 1997;90:4283– 96.

    Google Scholar 

  • Moran JL, Siegel D, Sun XM, Ross D. Induction of apoptosis by benzene metabolites in HL60 and CD34+ human bone marrow progenitor cells. Mol Pharmacol 1996;50:610–5.

    Google Scholar 

  • Pasinelli P, Houseweart M, Brown R Jr, Cleveland D. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu, Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. 2000;97:13901–16.

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton K, Plopper C., Mercer R., et al. Airway branching patterns influence asbestos fiber location and the extent of tissue injury in the pulmonary parenchyma. Lab Invest. 1986;55:688–95.

    Google Scholar 

  • Plopper C, Dungworth D, Tyler W. Pulmonary lesions in rats exposed to ozone. A correlated light and electron microscopic study. Am J Pathol. 1973;71:375–86.

    CAS  Google Scholar 

  • Plopper C, Hyde D, Weir, A. Centriacinar alteration in lungs of cats chronically exposed to diesel exhaust. Lab Invest. 1983;49:391–9.

    PubMed  CAS  Google Scholar 

  • Porter AG. Protein translocation in apoptosis. Trends Cell Biol. 1999;10:394–401.

    Article  Google Scholar 

  • Sakahira H, Enari M, Ohsawa Y, Uchiyama Y, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

    Article  PubMed  Google Scholar 

  • Shu S, Ju F, Fan L. The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett. 1985;85:169–71.

    Article  Google Scholar 

  • Snyder R. Overview of the toxicology of benzene. J Toxicol Environ Health. 2000;61:339–46.

    Article  CAS  Google Scholar 

  • Snyder R, Witz G, Goldstein BD. The toxicology of benzene. Environ Health Perspect. 1993;100:293–306.

    Article  PubMed  CAS  Google Scholar 

  • Stephens R, Sloan M, Evans M, Freeman G. Early response of lung to low levels of ozone. Am J Pathol. 1974;74:31–58.

    PubMed  CAS  Google Scholar 

  • St. George J, Harkema J, Hyde D, Plopper C. Cell populations and structure/function relationships of cells in the airways. In: Gardiner D, ed. Toxicology of the lung. New York: Raven Press; 1993:81–110.

  • Strandgaard C, Miller MG. Germ cell apoptosis in rat testis after administration of 1,3-dinitrobenzene. Reprod Toxicol. 1998;12:97–103.

    Article  PubMed  CAS  Google Scholar 

  • Vojdani A, Mordechai E, Brautbar N. Abnormal apoptosis and cell cycle progression in humans exposed to methyl tertiary-butyl ether and benzene contaminating water. Hum Exp Toxicol. 1997;16:485–94.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci. 2000;113:753–7.

    PubMed  CAS  Google Scholar 

  • Wyllie A. Apoptosis: cell death in tissue regulation. J Pathol. 1987;153:313–6.

    Article  PubMed  CAS  Google Scholar 

  • Xerri L, Palmerini F, Devilard E, et al. Frequent nuclear localization of ICAD and cytoplasmic co-expression of caspase-8 and caspase-3 in human lymphomas. J Pathol. 2000;192:194–202.

    Google Scholar 

  • Yardley-Jones A, Anderson D, Parke D. The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. Br J Ind Med. 1991;48:437–44.

    PubMed  CAS  Google Scholar 

  • Yeh, H-C, Harkema, J. Gross morphometry of airways. In: Gardiner D, ed. Toxicology of the lung. New York: Raven Press; 1993:55–79.

  • Yin S, Li G, Tain F, et al. A retrospective cohort study of leukemia and other cancers in benzene workers. Environ Health Perspect. 1989;82:207–13.

    Google Scholar 

  • Yin S, Hayes R, Linet M, et al. An expanded cohort study of cancer among benzene-exposed workers in China. Benzene Study Group. Environ Health Perspect. 1996a; 104:1339– 41.

  • Yin S, Hayes R, Linet M, et al. A cohort study of cancer among benzene-exposed workers in China: overall results. Am J Ind Med. 1996b; 29:227–35.

  • Zou H. Henzel W, Liu S, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405– 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Weaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, C.V., Liu, SP., Lu, JF. et al. The effects of benzene exposure on apoptosis in epithelial lung cells: Localization by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and the immunocytochemical localization of apoptosis-related gene products. Cell Biol Toxicol 23, 201–220 (2007). https://doi.org/10.1007/s10565-006-0165-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0165-2

Keywords

Navigation