Skip to main content
Log in

Comparison of the effects of melatonin and pentoxifylline on carbon tetrachloride-induced liver toxicity in mice

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The purpose of the study was to determine whether along and in combination melatonin (MLT) and pentoxlfylline (PTX) exerted beneficial effects on histopathological changes and changes in oxidant and antioxidant systems in liver caused by CCl4-induced liver toxicity in mice. Mice were randomly divided into six groups: control, olive oil, toxicity, MLT, PTX, PTX+MLT. MLT 10 mg/kg/day, PTX 50 mg/kg/day, and the same individual doses in MLT+PTX combination were given intraperitoneally to mice for 7 day. CCl4 0.8 mg/kg/day was administered on the 4th, 5th, and 6th days of therapy in all groups except the control and olive oil groups. In the toxicity group, increased concentrations of malondialdehyde (MDA) and lipid hydroperoxides (LOOH) and decreased glutathione peroxidase (GSH-Px) and catalase (CAT) activities were found compared to the control and olive oil groups (p < 0.05). Compared to the toxicity group, both the PTX group and the PTX+MLT group had decreased MDA and LOOH levels, whereas MLT reduced only LOOH levels (p < 0.01). MLT, PTX and MLT+PTX increased the GSH-Px and CAT activities compared to the toxicity group (p < 0.05). MLT increased CAT activity compared to PTX and MLT+PTX (p < 0.05). Superoxide dismutase enzyme activity did not change in any group (p < 0.05). Histopatholically, ballooning, degeneration, apoptosis, and bridging necrosis were seen in the toxicity group. MLT, PTX and MLT+PTX decreased the apoptosis and bridging necrosis (p < 0.01), and PTX and MLT+PTX decreased balloon degeneration compared to the toxicity group (p < 0.01). These results indicate that administration of PTX and MLT alone and in combination before onset of liver toxicity might prevent the oxidative damage by reducing oxidative stress and increasing antioxidant enzyme levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

AST:

apartate aminotransferase

CCl4 :

carbon tetrachloride

HE:

hematoxylin–eosin

LDH:

lactate dehydrogenase

LOOH:

lipid hydroperoxides

MDA:

malondialdehyde

MLT:

melatonin

PTX:

pentoxifylline

TBARS:

thibarbituric acid-reactive substances

References

  • Abdel Salam OM, Baiuomy AR, El-Shenawy SM, Hassan NS. Effect of pentoxifylline on hepatic injury caused in the rat the administration of carbon tetrachloride or acetaminophen. Pharmacol Rep. 2005;57:596–603.

    PubMed  CAS  Google Scholar 

  • Abdollahi M, Fooladian F, Emami B, Zafari K, Bahreini-Moghadam A. Protection by sildenafil and theophylline of lead acetate-induced oxidative stress in rat submandibular gland and saliva. Hum Exp Toxicol. 2003;22:587–92.

    Article  PubMed  CAS  Google Scholar 

  • Barlow-Walden LR, Reiter RJ, Abe M, et al. Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int. 1995;26:479–502.

    Google Scholar 

  • Basu S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology. 2003;189(1–2):113–27.

    Article  PubMed  CAS  Google Scholar 

  • Britton RS, Bacon BR. Role of free radicals in liver disseases and hepatic fibrosis. Hepatogastroenterology. 1994;41:343–8.

    PubMed  CAS  Google Scholar 

  • Castro GD, Diaz Gomez MI, Castro JA. DNA bases attack by reactive metabolites produced during carbon tetrachloride biotransformation and promotion of liver microsomal lipid peroxidation. Res Commun Mol Pathol Pharmacol. 1997: 95:253–8.

    PubMed  CAS  Google Scholar 

  • Daniels WM, Reiter RJ, Melchiorri D, Sewrynek DE, Pablos MI, Oritz GG. Melatonin counteracts lipid peroxidation induced by carbon tetrachloride but does not restore glucose 6-phosphatase activity. J Pineal Res. 1995;19:1–6.

    PubMed  CAS  Google Scholar 

  • Demir S, Erden MI. Pentoxifylline and N-acetylcysteine in hepatic ischemia/reperfusion injury. Clin Chim Acta. 1998;275:127–35.

    Article  PubMed  CAS  Google Scholar 

  • Desmouliere A, Xu G, Costa AM, Yousef IM, Gabbiani G, Tuchweber B. Effect of pentoxifylline on early proliferation and phenotypic modulation of fibrogenic cell in two rat models of liver fibrosis and on cultured hepatic stellata cells. J Hepatol. 1999;30:621–31.

    Article  PubMed  CAS  Google Scholar 

  • Goth L. A simple method for determination of serum catalase activity, and revision of reference range. Clin Chim Acta. 1991;196:143–52.

    Article  PubMed  CAS  Google Scholar 

  • Güven A, Güven A, Gülmez M. The effect of kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachloride-induced mice tissues. J Vet Med B Infect Dis Vet Public Health. 2003;50:412–6.

    PubMed  Google Scholar 

  • Halliwell B. Antioxidants and human disease: a general introduction. Nutr Rev. 1997;55:44–52.

    Article  Google Scholar 

  • Jaeschke H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther. 1990;255:935–41.

    PubMed  CAS  Google Scholar 

  • Jiang ZY, Woollard ACS, Wolff SP. Lipid hydroperoxide measurement by oxidation of Fe2 in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids. 1991;26:853–6.

    PubMed  CAS  Google Scholar 

  • Kaye AD, Ibrahim IN, Kadowitz PJ, Nossaman BD. Analysis of response to pentoxifylline in the pulmonary vasculare bed of the cat. Crit Care Med. 1996;24:263–7.

    Article  PubMed  CAS  Google Scholar 

  • Kozaki K, Egawa H, Bermidez Ci, Feducu NJ, So SK, Esquival CO. Pentoxifylline inhibits production of superoxide anion and tumor necrosis factor by Kupffer cell in rat liver preservation. Transplant Proc. 1993;25:3025–6.

    PubMed  CAS  Google Scholar 

  • Lee KS, Cottam HB, Houglum K, Wasson DB, Carson D, Chojkier M. Pentoxifylline blocks hepatic stellate cell activation independently of phosphodiesterase inhibitory activity. Am J Physiol. 1997;273:1094–100.

    Google Scholar 

  • MacDonald-Wicks LK, Garg ML. Modulation of carbon tetrachloride-induced oxidative stress by dietary fat in rats. J Nutr Bioch. 2002;13:87–95.

    Article  CAS  Google Scholar 

  • Mandell GL. ARDS, neutrophils and pentoxifylline. Am Rev Respir Dis. 1988;138:1103–5.

    PubMed  CAS  Google Scholar 

  • Noyan T, Önem Ö, Sekeroglu MR, et al. Effects of erythropoietin and pentoxifylline on the oxidant and antioxidant systems in the experimental short bowel syndrome. Cell Biochem Funct. 2003;21:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Noyan T, Sahin I, Sekeroglu MR, Dülger H. The serum vitamin C levels in Behĉet’s disease. Yonsei Med J. 2003;44(5):771–78.

    PubMed  CAS  Google Scholar 

  • Ohta Y, Kongo M, Sasaki E, Nishida K, Ishigura I. Therapeutic effect of melatonin on carbon tetrachloride induced acute liver damage in rats. J Pineal Res. 2000;28:119–26.

    Article  PubMed  CAS  Google Scholar 

  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.

    PubMed  CAS  Google Scholar 

  • Pierrefiche G, Laborit H. Oxygen free radicals, melatonin, and aging. Exp Gerontol. 1995;30:213–27.

    Article  PubMed  CAS  Google Scholar 

  • Pierrefiche G, Topall G, Courboin G, Henriet I, Laborit H. Antioxidant activity of melatonin in mice. Res Commun Chem Pathol Pharmacol. 1993;80:211–23.

    PubMed  CAS  Google Scholar 

  • Recknagel RO, Glende EA, Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther. 1989;43:139–54.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ, Tang L, Garcia JJ, Munoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997;60:2255–71.

    Article  PubMed  CAS  Google Scholar 

  • Sener G, Akgün U, Satroglu H, Topaloglu U, Keyer-Uysal M. The effect of pentoxifylline on ischemia/reperfusion injury. Fundam Clin Pharmacol. 2001;15:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Stoyanovsky DA, Cederbaum, AI. Metabolism of carbon tetrachloride to trichloromethyl radical: an ESR and HPLC-EC study. Chem Res Toxicol. 1999; 12:730–36.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34:497–500.

    PubMed  CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J. 1993;1:57–60.

    Google Scholar 

  • Tan DX, Manchester LC, Reiter RS, et al. Melatonin directly scavenger hydrogen peroxidation a potential new metabolic, pathway of melatonin biotransformation. Free Radic Biol Med. 2000;1177–85.

  • Ward A, Clissold SP. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs. 1987;34:50–97.

    PubMed  CAS  Google Scholar 

  • Wasowicz W, Neve J, Peretz A. Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. Clin Chem. 1993;39(12):2522–6.

    PubMed  CAS  Google Scholar 

  • Zavodnik LB, Zavodnik IB, Lapshina EA, et al. Protective effects of melatonin against carbon tetrachloride hepatotoxicity in rats. Cell Biochem Funct. 2005;23(5):353–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Noyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noyan, T., Kömüroğlu, U., Bayram, İ. et al. Comparison of the effects of melatonin and pentoxifylline on carbon tetrachloride-induced liver toxicity in mice. Cell Biol Toxicol 22, 381–391 (2006). https://doi.org/10.1007/s10565-006-0019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0019-y

Keywords

Navigation