Skip to main content
Log in

Comparative toxic potential of market formulation of two organophosphate pesticides in transgenic Drosophila melanogaster (hsp70-lacZ)

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

This study investigated the working hypothesis that two widely used organophosphate pesticides; Nuvan and Dimecron, exert toxic effects in Drosophila. Transgenic D. melanogaster (hsp70-lacZ) was used as a model for assaying stress gene expression and AchE activity as an endpoint for toxicity and also to evaluate whether stress gene expression is sufficient to protect against toxic insult of the chemicals and to prevent tissue damage. The study was extended to investigate the effect of the pesticides on the life cycle and reproduction of the organism. The study showed that Nuvan affected emergence of the exposed flies more drastically than Dimecron and the effect was lethal at the highest tested concentration (0.075 ppm). While Nuvan at 0.0075 and 0.015 ppm concentrations affected reproduction of the flies significantly, the effect of Dimecron was significant only at 0.015 and 0.075 ppm. Nuvan-exposed third-instar larvae exhibited a 1.2-fold to 1.5-fold greater hsp70 expression compared to Dimecron at concentrations ranging from 0.0075 to 0.075 ppm following 12 and 18 h exposure. While maximum expression of hsp70 was observed in Nuvan-exposed third-instar larval tissues following 18 h exposure at 0.075 ppm, Dimecron at the same dietary concentration induced a maximum expression of hsp70 following 24 h exposure. Further, concomitant with a significant induction of hsp70, significant inhibition of AchE was observed following chemical exposure and temperature shock. Concurrent with a significant decline in hsp70 expression in Nuvan-exposed larvae after 48 h at 0.075 ppm, tissue damage was evident. Dimecron-exposed larvae exhibited a plateau in hsp70 induction even after 48 h exposure and moderate tissue damage was observed in these larvae. The present study suggests that Nuvan is more cytotoxic than Dimecron in transgenic Drosophila melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AchE:

acetylchloinesterase

DAB:

diaminobenzidine tetrahydrochloride

ECVAM:

European Center for the Validation of Alternative Methods

HSP:

heat shock protein

HRP:

horseradish peroxidase

MRL:

maximum residue limit

NOAEL:

no observed adverse effect level

ONPG:

O-nitrophenyl-β-d-galactopyranoside

ppm:

parts per million

OP:

organophosphate pesticide

PSS:

Poels' salt solution

References

  • Ait-Aissa S, Porcher J, Arrigo A, Lambrey C. Activation of the hsp70 promoter by environmental inorganic and organic chemicals: relationships with cytotoxicity and lipophilicity. Toxicology. 2000;145:147–57.

    CAS  PubMed  Google Scholar 

  • Ait-Aissa S, Pandard P, Magaud H, Arrigo AP, Thyband E, Porcher JM. Evaluation of an in vitro hsp70 induction test for toxicity assessment of complex mixtures: comparison with chemical analyses and ecotoxicity tests. Ecotoxicol Environ Saf. 2003;54:92–104.

    CAS  PubMed  Google Scholar 

  • Akbarsha MA, Sivasamy P. Male reproductive toxicity of phosphamidon: histopathological changes in epididymis. Indian J Exp Biol. 1998;36:34–38.

    CAS  PubMed  Google Scholar 

  • AnandKumar A, Tripathy AP, Tripathy NK. Effect of Dimecron on the blood parameters of Heteropneustes fossilis. J Environ Biol. 2001;22:297–9.

    CAS  PubMed  Google Scholar 

  • Bagchi D, Bhattacharya G, Stohs SJ. In vitro and in vivo induction of heat shock (stress) protein (Hsp) gene expression by selected pesticides. Toxicology. 1996;112:57–68.

    Article  CAS  PubMed  Google Scholar 

  • Baillie AC, Wright K. Biochemical pharmacology. In: Kerkut GA, Gilbert LI eds. Comprehensive insect physiology, biochemistry and pharmacology. New York: Pergamon Press; 1985;11: 332–7.

  • Benford DJ, Hanley BA, Bottrill K, Oehischiager S, Balls M, Branca F. Biomarkers as predictive tools in toxicity testing. ATLA. 2000;28:119–31.

    Google Scholar 

  • Bierkens JGEA. Applications and pitfalls of stress proteins in biomonitoring. Toxicology. 2000;153:61–72.

    Article  CAS  PubMed  Google Scholar 

  • Bird SB, Gaspari RJ, Dickson EW. Early death due to severe organophosphate poisoning is a centrally mediated process. Acad Emerg Med. 2003;10:295–8.

    PubMed  Google Scholar 

  • Cakir S, Sarikaya R. Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food Chem Toxicol. 2005;43:443–50.

    CAS  PubMed  Google Scholar 

  • Canadas F, Cardona D, Davila E, Sanchez-Santed F. Long-term neurotoxicity of chlorpyrifos: Spatial learning impairment on repeated acquisition in water maze. Toxicol Sci. 2005;85:944–51.

    Article  CAS  PubMed  Google Scholar 

  • Chadwick PR. Studies on the sub-lethal effect of pyrethrins on the green weevil, Calandra oryzae L. Pyrethrum Post. 1962;6:20–6.

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE. Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999;61:243–82.

    Article  CAS  PubMed  Google Scholar 

  • Festing MFW, Baumans V, Combes DR, Halder M, Hendriksen FM, Howard BR. Reducing the use of laboratory animals in biomedical research: problems and possible solutions. ATLA. 1998;26:283–301.

    Google Scholar 

  • Gallo MA, Lawryk NJ. Organic phosphorous pesticides. In: Hayes WJ, Laws ER, eds. Handbook of pesticide toxicology. New York: Academic Press; 1991:5–13.

    Google Scholar 

  • Gayathri MV, Krishnamurthy NB. Studies on the toxicity of mercurial fungicide Agallol 3 in Drosophila melanogaster. Environ Res. 1981;24:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Gruvez G, Hoste C, Lints CV, Lints FA. Oviposition rhythm in Drosophila melanogaster and its alteration by a change in the photoperiodicity. Experientia. 1971;27:1414–6.

    Google Scholar 

  • Hightower LE. Heat shock, stress proteins, chaperones and proteotoxicity. Cell. 1991;66:191–4.

    Article  CAS  PubMed  Google Scholar 

  • Isoda H, Talorete T, Han J, Oka S, Abe Y, Inamori Y. Effects of organophosphorus pesticides used in China on various mammalian cells. Environ Sci. 2005;12:9–19.

    CAS  PubMed  Google Scholar 

  • John S, Kale M, Rathore N, Bhatnagar D. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J Nutr Biochem. 2001;12:500–4.

    Article  CAS  PubMed  Google Scholar 

  • Johnson MK. Organophosphorus and other inhibitors of brain ‘neurotoxic esterase’ and the development of delayed neurotoxicity in hens. Biochem J. 1970;120:523–31.

    CAS  PubMed  Google Scholar 

  • Jokanovic M, Maksimovic M, Stepanovic RM. Interaction of phosphamidon with neuropathy targets esterase and acetylcholinesterase of hen brain. Arch Toxicol. 1995;69:425–8.

    Article  CAS  PubMed  Google Scholar 

  • Kar Chowdhuri D, Saxena DK, Viswanathan PN. Effect of hexachlorocyclohexane (HCH), its isomers, and metabolites on Hsp70 expression in transgenic Drosophila melanogaster. Pestic Biochem Physiol. 1999;63:15–25.

    Article  Google Scholar 

  • Krebs RA, Feder ME. Natural variation in the expression of the heat shock protein Hsp70 in a population of Drosophila melanogaster, and its correlation with tolerance of ecologically relevant thermal stress. Evolution. 1997a;51:173–9.

    Google Scholar 

  • Krebs RA, Feder ME. Tissue specific variation in hsp70 expression and thermal damage in Drosophila melanogaster larvae. J Exp Biol. 1997b;200:2007–15.

    CAS  Google Scholar 

  • Lakhotia SC, Mukherjee T. Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide on the heat shock induced puffing activity. Chromosoma (Berl). 1980;81:125–36.

    CAS  Google Scholar 

  • Lakhotia SC, Prasanth KV. Tissue and development specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery in Drosophila melanogaster. J Exp Biol. 2002;205:345–58.

    CAS  PubMed  Google Scholar 

  • Lakhotia SC, Singh AK. A novel set of heat shock polypeptides in Malpighian tubules of Drosophila melanogaster. J Genet. 1989;68:129–38.

    Article  CAS  Google Scholar 

  • Leigh-Brown AJ, Isha-Horowicz D. Evaluation of the 87A and 87C heat shock loci in Drosophila. Nature. 1981;290:677–82.

    CAS  PubMed  Google Scholar 

  • Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH. Stress proteins (Hsps): methods of detection and their use as an environmental biomarker. Ecotoxicology. 1999;8:351–68.

    Article  CAS  Google Scholar 

  • Linonetto MG, Caricato R, Giordano ME, Pascariello MF, Marinosci L, Schettino T. Integrated use of biomarkers (acetylchloinesterase and antioxidant enzymes activities) in Mytilus galloprovinacialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull. 2003;46:324–30.

    Google Scholar 

  • Lints FA. Life span in Drosophila. Gerontologia. 1971;17:33–51.

    Article  CAS  PubMed  Google Scholar 

  • Lis JT, Simon JA, Sutton CA. New heat shock puffs and β-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell. 1983;35:41–7.

    Article  Google Scholar 

  • Luning KG. Drosophila test in pharmacology. Nature. 1966;209:84–6.

    CAS  PubMed  Google Scholar 

  • Marchal-Segault M, Seuge J, Lauge G. Studies on the toxicity of some carbamate fungicides in Drosophila melanogaster Meig (Insecta, Diptera). Environ Res. 1985;37:26–32.

    CAS  PubMed  Google Scholar 

  • Mathew A, Morimoto RI. Role of the heat-shock response in the life and death of proteins. Ann NY Acad Sci. 1998;851:99–111.

    CAS  PubMed  Google Scholar 

  • Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science. 1993;259:1409–10.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay I, Nazir A, Mahmood K, et al. Toxicity of argemone oil: effect on hsp70 expression and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Cell Biol Toxicol. 2002a;18:1–11.

    Article  CAS  Google Scholar 

  • Mukhopadhyay I, Nazir A, Saxena DK, Kar Chowdhuri D. Toxicity of Cypermethrin: hsp70 as a biomarker of response in transgenic Drosophila. Biomarkers. 2002b;7:501–10.

    Article  CAS  Google Scholar 

  • Mukhopadhyay I, Saxena DK, Kar Chowdhuri D. Hazardous effects of effluent from the chrome plating Industry: 70 Kda Heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ). Environ Health Perspec. 2003;111:1926–32.

    Article  Google Scholar 

  • National Toxicology Program. NTP Toxicology and Carcinogenesis studies of dichlorvos (CAS NO. 62-73-7) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol Progr Tech Rep Ser. 1989;342:1–208.

    Google Scholar 

  • Nazir A, Mukhopadhyay I, Saxena DK, Kar Chowdhuri D. Chlorpyrifos-induced hsp70 expression and effect on reproductive performance in transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Arch Environ Contam Toxicol. 2001;41:443–9.

    CAS  PubMed  Google Scholar 

  • Nazir A, Mukhopadhyay I, Saxena DK, Kar Chowdhuri D. Evaluation of the No-observed adverse effect level of solvent dimethyl sulphoxide in Drosophila melanogaster. Toxicol Mech Methods. 2003a;3:147–52.

    Google Scholar 

  • Nazir A, Mukhopadhyay I, Saxena DK, Siddiqui MS, Kar Chowdhuri D. Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. J Biochem Mol Toxicol. 2003b;17:98–107.

    Article  CAS  Google Scholar 

  • Nazir A, Saxena DK, Kar Chowdhuri D. Induction of hsp70 in transgenic Drosophila: biomarker of exposure against phthalimide group of chemicals. Biochim Biophys Acta. 2003c;1621:218–25.

    CAS  Google Scholar 

  • Nover L. The heat shock response. Boca Raton, FL: CRC Press; 1991:5–344.

    Google Scholar 

  • O'Kane CJ, Gehring WJ. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA. 1987;84:9123–7.

    PubMed  Google Scholar 

  • Panda BB, Sharma C. Organophosphate induced chlorophyll mutations in Hordeum vulgare. Theor Appl Genet. 1979;55:253–5.

    Article  CAS  Google Scholar 

  • Poovala VS, Kanji VK, Tachikawa H, Salahudeen AK. Role of oxidant stress and antioxidant protection in Acephate induced renal tubular cytotoxicity. Toxicol Sci. 1998;46:403–9.

    Article  CAS  PubMed  Google Scholar 

  • Pope CN. Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B Crit Rev. 1999;2:161–81.

    CAS  PubMed  Google Scholar 

  • Pope CN, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol. 2005;19:433–46.

    CAS  Google Scholar 

  • Reddy MS, Rao KV. Toxic impact of phosphamidon on acid phosphatase of prawn, Metapenaeus monoceros (Fabricius). Biochem Int. 1990;22:1025–31.

    CAS  PubMed  Google Scholar 

  • Ritossa F. New puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 1962;18:571–3.

    Article  CAS  Google Scholar 

  • Rokutan K, Hirakawa T, Teshima S, et al. Implications of heat shock/stress proteins for medicine and disease. J Med Invest. 1998;44:137–47.

    CAS  PubMed  Google Scholar 

  • Rossner PJ, Binkova B, Sram RJ. Heat shock proteins Hsp32 and Hsp70 as Biomarkers of an early response? In vitro induction of heat shock proteins after exposure of cell culture to carcinogenic compounds and their real mixture. Mutat Res. 2003;542: 105–6.

    CAS  PubMed  Google Scholar 

  • Ryan JA, Hightower LE. Stress proteins as molecular biomarkers for environmental toxicology. In: Feige U, Morimoto RI, Yahura I, Polla B, eds. Stress inducible cellular response. Basel: Birkhhauser Verlag; 1996;411–23.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning, a laboratory manual. Cold Spring Harbour: Cold Spring harbour Laboratory Press; 1989;18:47–75.

    Google Scholar 

  • Schlesinger MJ. Heat shock proteins: The search for functions. J Cell Biol. 1986;103:321–5.

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol. 2004;198: 132–51.

    Article  CAS  PubMed  Google Scholar 

  • Song X, Seidler FJ, Saleh JL, Zhang J, Padilla S, Slotkin TA. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol. Appl. Pharmacol. 1997;145:158–74.

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz UN, Rensing L. Heat shock protein induction by certain chemical stressors is correlated with their cytotoxicity, lipophilicity and protein-denaturing capacity. Toxicology. 1997;123:185–95.

    Google Scholar 

  • Stringham EG, Candido PM. Transgenic hsp16-lacZ strains of the soil nematode Caenorhabditis elegans as biological monitors of environmental stress. Environ Toxicol Chem. 1994;8:1211–20.

    Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL. A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones. 1996;1:23–28.

    Article  CAS  PubMed  Google Scholar 

  • Tomlin C, ed. The Pesticide Manual. 10th edn. Incorporating the Agrochemicals Handbook. Alston, Hants: British Crop Protection Council; 1994;313–4.

  • Toxics Link. Pesticides in India: environment and health source book. Chennai. India: Toxics Link; 2000:1–173.

  • Velaquez JM, Lindquist S. Hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell. 1984;36:655–62.

    Google Scholar 

  • Werner I, Nagel R. Stress proteins Hsp60 and Hsp70 in three species of amphipoda exposed to cadmium, diazinon, dieldrin and fluoranthene. Environ Toxicol Chem. 1997;16:2393–403.

    Article  CAS  Google Scholar 

  • Yamano T, Morita S. Hepatotoxicity of trichlorfon and dichlorvos in isolated rat hepatocytes. Toxicology. 1992;76:69–77.

    CAS  PubMed  Google Scholar 

  • Yang D, Lu X, Zhang W, He F. Biochemical changes in primary culture of skeletal muscle cells following dimethoate exposure. Toxicology. 2002;174:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama N, Hirata M, Ohtsuka K, et al. Coexpression of human chaperone Hsp70 and Hsdj or Hsp40 cofactor increases solubility of over expressed target proteins in insect cells. Biochim Biophys Acta. 2000;1493:119–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kar Chowdhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S.C., Siddique, H.R., Saxena, D.K. et al. Comparative toxic potential of market formulation of two organophosphate pesticides in transgenic Drosophila melanogaster (hsp70-lacZ). Cell Biol Toxicol 21, 149–162 (2005). https://doi.org/10.1007/s10565-005-0145-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-005-0145-y

Keywords

Navigation