Skip to main content
Log in

An overview of studies on the highly dispersed uranium oxide species occluded within mesoporous MCM-41 and MCM-48 host materials

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

In this article we have consolidated our recent studies on anchoring of uranyl groups and encapsulation of highly dispersed nano-particles of α-U3O8 in mesoporous MCM samples. The size of uranium oxide crystallites and the binding of uranyl groups at framework sites of host matrix depended on the preparation method, viz. wet impregnation, exchange of template cations, and the hydrothermal route. These uranium species contributed individually to the catalytic oxidation of organic molecules, such as methanol, toluene and benzyl alcohol; the uranyl groups playing a more important role at lower reaction temperatures. Also, the size and the lattice oxygen of uranium oxide crystallites played a vital role, not only in the lowering of reaction onset temperature but also in deciding the nature and the reactivity of the transient surface species formed during the oxidation of above mentioned organics. For instance, the results of in situ IR spectroscopy experiments have shown that while larger-size U3O8 crystallites help in the growth of certain oxymethylene (–OCH2) and polymerized oxymethylene (–OCH2) n species, adsorption of methanol on smaller size particles helped in the additional formation of formate-type complexes. Thus, a relationship was found between the size of uranium oxide crystallites, the nature of the transient species formed and the catalytic conversion of methanol to form CO2, CO and methane. In addition, the uranyl ions anchored within the pore system of host matrix are found to serve as efficient heterogeneous photocatalysts for the sunlight-assisted deep oxidation of organic molecules in the vapor phase and at room temperature. The reaction mechanisms, accounting for the catalytic properties of occluded UO x species without and in the presence of radiation, are discussed in the light of the above mentioned results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Weiss (2000) Sci. News 157 204

    Google Scholar 

  2. J.J Katz G.T Seaboarg L.R Morss (Eds) (1986) The Chemistry of Actinide Elements Chapman-Hall London

    Google Scholar 

  3. Gmelin Handbook, Uranium Supplement, vol. C5 (1979)

  4. G.C Allen J.A Crofts A.J Griffiths (1976) J. Nuclear Mater. 62 273 Occurrence Handle10.1016/0022-3115(76)90024-6 Occurrence Handle1:CAS:528:DyaE2sXitlyrsA%3D%3D

    Article  CAS  Google Scholar 

  5. M.R Castell C Muggelberg G.A.D Briggs D.T Goddard (1976) J. Vac Sci. Technol. B 14 966 Occurrence Handle10.1116/1.589185

    Article  Google Scholar 

  6. C.A Colmenares (1984) Prog. Solid St. Chem. 15 257 Occurrence Handle10.1016/0079-6786(84)90003-7 Occurrence Handle1:CAS:528:DyaL2MXkslKkur4%3D

    Article  CAS  Google Scholar 

  7. H Collette V Deremince-Mathieu Z Gabelica J.N Nagy E.G Derouane J.J Verbist (1987) J. Chem. Soc., Faraday Trans. 283 1263

    Google Scholar 

  8. H.W.G Heynen H.S Van Der Baan (1974) J. Catal. 34 167 Occurrence Handle10.1016/0021-9517(74)90025-6 Occurrence Handle1:CAS:528:DyaE2cXkvFSrsb8%3D

    Article  CAS  Google Scholar 

  9. R.K Grasselli J.D Burrington D.D Suresh M.S Friedrich M.A.S Hazle (1981) J. Catal. 68 109 Occurrence Handle10.1016/0021-9517(81)90044-0 Occurrence Handle1:CAS:528:DyaL3MXkvFKmur4%3D

    Article  CAS  Google Scholar 

  10. (a) F. Nozaki, and K. Ohki, Bull. Chem. Soc. Jpn. 45 (1972) 3473; (b) F. Nozaki, F. Matsukawa and Y. Mano, Bull. Chem. Soc. Jpn. 48 (1975) 2764

  11. (a) H. Madhavaram and H. Idriss, J. Catal. 184 (1999) 553; (b) H. Madhavaram and H. Idriss, J. Catal. 206 (2002) 155; (c) H. Madhavaram, P. Buchanan and H. Idriss, J. Vac. Sci. Technol. A 15 (1997) 1685

  12. (a) G.J. Hutchings, C.S. Heneghan, I.D. Hudson and S.H. Taylor, Nature 384 (1996) 341; (b) C.S. Heneghan, G.J. Hutching, S.R. O’Leary, S.H. Taylor, V.J. Boyd and I.D. Hudson, Catal. Today 54 (1999) 3; (c) S.H. Taylor and S.R. O’Leary, Appl. Catal. B: Enviornmental 25 (2000) 137

  13. M Sarakha M Bolte H.D Burrows (1999) J. Photochem. and Photobio. A: Chemistry 107 101 Occurrence Handle10.1016/S1010-6030(97)00064-6

    Article  Google Scholar 

  14. W.D Wang A Bakac J.H Espenson (1995) Inorg. Chem. 34 6034 Occurrence Handle10.1021/ic00128a014 Occurrence Handle1:CAS:528:DyaK2MXptVeisLg%3D

    Article  CAS  Google Scholar 

  15. M.Z Hoffman F Bolletta L Moggi G.L Hug (1989) J. Phys. Chem. 18 219 Occurrence Handle1:CAS:528:DyaL1MXksVGnsbg%3D

    CAS  Google Scholar 

  16. S.S Sandhu K.B Kohli A.S Brar (1984) Inorg. Chem. 23 3609 Occurrence Handle10.1021/ic00190a036 Occurrence Handle1:CAS:528:DyaL2cXlvVSqtbw%3D

    Article  CAS  Google Scholar 

  17. T.M McCleskey C.J Burns W Tumas (1999) Inorg. Chem. 38 5924 Occurrence Handle10.1021/ic9909126 Occurrence Handle1:CAS:528:DyaK1MXnsFOktbs%3D

    Article  CAS  Google Scholar 

  18. H.D Burrows S.J Formosinho M.G Miguel F.P Coelho (1976) Mern. Acad. Ciencias Lisbao (Classe de Ciencias) 19 185

    Google Scholar 

  19. Balzani V. F Bolletta M.T Gandolfi M Maestri (1978) Top. Curr. Chem. 75 1

    Google Scholar 

  20. S.L Suib A Kostapapas D Psaras (1984) J. Am. Chem. Soc. 106 1614 Occurrence Handle10.1021/ja00318a011 Occurrence Handle1:CAS:528:DyaL2cXht1Shu74%3D

    Article  CAS  Google Scholar 

  21. S.L Suib K.A Corrado (1985) Inorg. Chem. 24 863 Occurrence Handle10.1021/ic00200a013 Occurrence Handle1:CAS:528:DyaL2MXht1aqt7c%3D

    Article  CAS  Google Scholar 

  22. S Dai D.H Metcalf G.D Del Cul L.M Toth (1996) Inorg. Chem. 35 7786 Occurrence Handle10.1021/ic9604066

    Article  Google Scholar 

  23. K Vidya S.E Dapurkar P Selvam S.K Badamali N.M Gupta (2001) Microporous Mesoporous Mater. 50 173 Occurrence Handle10.1016/S1387-1811(01)00445-0 Occurrence Handle1:CAS:528:DC%2BD3MXpt1arur8%3D

    Article  CAS  Google Scholar 

  24. K Vidya S.E Dapurkar P Selvam S.K Badamali D Kumar N.M Gupta (2002) J. Mol. Catal. A: Chem. 181 91 Occurrence Handle10.1016/S1381-1169(01)00350-8 Occurrence Handle1:CAS:528:DC%2BD38XhvFOmsrk%3D

    Article  CAS  Google Scholar 

  25. D Kuamr S Bera A.K Tripathi G.K Dey N.M Gupta (2003) Microporous Mesoporous Mater. 66 157 Occurrence Handle10.1016/j.micromeso.2003.08.027

    Article  Google Scholar 

  26. S.K Badamali D.P Dutta A.K Tripathi V.K Jain N.M Gupta (2003) Catal. Lett. 85 13 Occurrence Handle10.1023/A:1022104421047 Occurrence Handle1:CAS:528:DC%2BD3sXmsFCqsA%3D%3D

    Article  CAS  Google Scholar 

  27. D Kumar V.S Kamble N.M Gupta (2003) Catal. Lett. 88 175 Occurrence Handle10.1023/A:1024065807057 Occurrence Handle1:CAS:528:DC%2BD3sXkt1Kmt70%3D

    Article  CAS  Google Scholar 

  28. D Kumar K.T Pillai V Sudershanan G.K Dey N.M Gupta (2003) Chem. Mater. 15 3859 Occurrence Handle10.1021/cm030269s Occurrence Handle1:CAS:528:DC%2BD3sXms1aqt78%3D

    Article  CAS  Google Scholar 

  29. D Kumar G.K Dey N.M Gupta (2003) Phys. Chem. Chem.l Phys. 5 5477 Occurrence Handle1:CAS:528:DC%2BD3sXpsVKqt74%3D

    CAS  Google Scholar 

  30. D Kumar K Vidya P Selvam G.K Dey N.M Gupta ( 2004) NoChapterTitle A Sharma J Bellare A Sharma (Eds) Advances in Nanoscience and Nanotechnology. NISCAIR Delhi 265–276

    Google Scholar 

  31. D. Kumar S. Varma N.M. Gupta (2004) Catal. Today 93–95 541 Occurrence Handle10.1016/j.cattod.2004.06.002

    Article  Google Scholar 

  32. D. Kumar S. Varma G.K. Dey N.M. Gupta (2004) Microporous Mesoporous Mater 73 181 Occurrence Handle10.1016/j.micromeso.2004.05.010 Occurrence Handle1:CAS:528:DC%2BD2cXmvVOrsrY%3D

    Article  CAS  Google Scholar 

  33. K. Vidya V.S. Kamble P. Selvam N.M. Gupta (2004) Appl. Catal. B Environment 54 145 Occurrence Handle10.1016/j.apcatb.2004.07.001 Occurrence Handle1:CAS:528:DC%2BD2cXovVKrurc%3D

    Article  CAS  Google Scholar 

  34. K.S.W Sing D.H Everett R.A.W Haul L Moscou R.A Pierotti J Rouquerol T Siemieniewska (1985) J. Pure Appl. Chem. 57 603 Occurrence Handle1:CAS:528:DyaL2MXhvFWrtb4%3D

    CAS  Google Scholar 

  35. S.P McGlynn J.K Smith (1961) J. Mol. Spectroscopy 6 164 Occurrence Handle10.1016/0022-2852(61)90237-5 Occurrence Handle1:CAS:528:DyaF3MXhtV2rsb0%3D

    Article  CAS  Google Scholar 

  36. B Jeżowska-Trzebiatowska A Bartecki (1962) Spectrochim. Acta 18 799

    Google Scholar 

  37. J.S Beck J.C Vartuli W.J Roth M.E Leonowicz C.T. Kresge K.D. Schmitt C.T.W Chu D.H Olson E.W Sheppard S.B McCullen J.B Higgins J.L Schlenker (1992) J. Am. Chem. Soc. 114 10834 Occurrence Handle10.1021/ja00053a020 Occurrence Handle1:CAS:528:DyaK38Xms1entr8%3D

    Article  CAS  Google Scholar 

  38. M Morey A Davidson H Eckert G Stucky (1996) Chem. Mater. 8 486 Occurrence Handle10.1021/cm950397j Occurrence Handle1:CAS:528:DyaK28XlvVCjsA%3D%3D

    Article  CAS  Google Scholar 

  39. M Froba R Kohn G Bouffaud et al. (1999) Chem. Mater. 11 2858 Occurrence Handle10.1021/cm991048i

    Article  Google Scholar 

  40. K.M. Reddy, I. Moudrakovski and A. Sayari, J. Chem. Soc. Chem. Commun. (1994) 1059

  41. Z Luan H He W Zhou C.-F Cheng J Klinowski (1995) J. Chem. Soc. Faraday Trans. 91 2955 Occurrence Handle10.1039/ft9959102955 Occurrence Handle1:CAS:528:DyaK2MXnvVOls78%3D

    Article  CAS  Google Scholar 

  42. W Zhang M Froba J Wang P.T Tanev J Wong T.J Pinnavaia (1996) J. Am. Chem. Soc. 118 9164 Occurrence Handle10.1021/ja960594z Occurrence Handle1:CAS:528:DyaK28XmtF2itr0%3D

    Article  CAS  Google Scholar 

  43. R Drot E Simoni M Alnot J.J Ehrhardt (1998) J. Colloid Interface Sci. 205 410 Occurrence Handle10.1006/jcis.1998.5652 Occurrence Handle1:CAS:528:DyaK1cXmtVSkurY%3D Occurrence Handle9735204

    Article  CAS  PubMed  Google Scholar 

  44. C Lomenech E Simoni R Drot J.J Ehrhardt J Mielczarski (2003) J. Colloid Interface Sci. 261 221 Occurrence Handle10.1016/S0021-9797(03)00101-2 Occurrence Handle1:CAS:528:DC%2BD3sXjtl2rt7s%3D

    Article  CAS  Google Scholar 

  45. N Ollier M.J Guittet M.G Soyer G Panczer B Champagnon P Jollivet (2003) Optical Mater. 24 63 Occurrence Handle10.1016/S0925-3467(03)00106-X Occurrence Handle1:CAS:528:DC%2BD3sXnvVekt7k%3D

    Article  CAS  Google Scholar 

  46. Z Luan J Xu H He J Klinowski L Kevan (1996) J. Phys. Chem. B 100 19595 Occurrence Handle10.1021/jp962353j Occurrence Handle1:CAS:528:DyaK28XntVaju7w%3D

    Article  CAS  Google Scholar 

  47. I.A Fischer A.T Bell (1999) J. Catal. 184 357 Occurrence Handle10.1006/jcat.1999.2420

    Article  Google Scholar 

  48. C Flego A Carati C Perego (2001) Microporous Mesoporous Mater. 44–45 733 Occurrence Handle10.1016/S1387-1811(01)00255-4

    Article  Google Scholar 

  49. G Busca A.S Elmi P Forzatti (1987) J. Phys. Chem. 91 5263 Occurrence Handle10.1021/j100304a026 Occurrence Handle1:CAS:528:DyaL2sXlvFOgsr0%3D

    Article  CAS  Google Scholar 

  50. (a) G.J. Millar, C.H. Rochester and K.C. Waugh, J. Chem. Soc. Faraday, Trans. 87 (1991) 2785; (b) G.J. Millar, C.H. Rochester and K.C. Waugh, J. Chem. Soc. Faraday Trans. 87 (1991) 2795

  51. K. Vidya, V.S. Kamble, P. Selvam and N.M. Gupta, Catal. Lett. under publication 98 (2004) 113

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Gupta, N. An overview of studies on the highly dispersed uranium oxide species occluded within mesoporous MCM-41 and MCM-48 host materials. Catal Surv Asia 9, 35–49 (2005). https://doi.org/10.1007/s10563-005-3336-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-005-3336-x

Key words:

Navigation