Skip to main content
Log in

Efficient Metal-Free Catalytic Reduction of Nitro to Amine Over Carbon Sheets Doped with Nitrogen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A highly efficient nitrogen-doped carbon sheet-like material (NCS) is developed via simple pyrolysis of β-cyclodextrin and urea at different temperatures. The effect of the pyrolysis temperature (500–800 °C) on the nitrogen species present in the catalysts is thoroughly studied. These nitrogen species formed by the pyrolysis are proven to be the active sites for the chemical conversion. These catalysts containing a significant amount of nitrogen with a high degree of defects display excellent catalytic activity towards the reduction of nitro-compounds. The effect of solvents, reaction time, and temperature in nitrobenzene reduction reaction is also studied. This protocol can be easily utilized industrially due to its several excellent features such as short reaction time, use of green solvent, column chromatography free, and applicable to the gram scale. Besides, after the reaction, the NCS catalyst can be easily recovered and reused up to five runs without significant loss on its catalytic activity.

Graphical Abstract

A facile and environmentally friendly method for the synthesis of metal-free NCS and their application in nitro reduction is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vogt PF, Gerulis JJ (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Roose P, Eller K, Henkes E, Rossbacher R, Hoke H (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  3. Eunsuk K, Han S, Moon BK (2013) Catal Commun 45:25–29

    Google Scholar 

  4. Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) Water Res 48:210–217

    Article  CAS  Google Scholar 

  5. Khan FA, Dash J, Sudheer Ch, Gupta RK (2003) Tetra Lett 44:7783–7787

    Article  CAS  Google Scholar 

  6. Rai G, Jeong JM, Lee YS, Hyung WK, Lee DS, Chung JK, Myung CL (2005) Tetra Lett 46:3987–3990

    Article  CAS  Google Scholar 

  7. Leng F, Gerber IC, Lecante P, Moldovan S, Girleanu M, Axet MR, Serp P (2016) ACS Catal 6:6018–6024

    Article  CAS  Google Scholar 

  8. Tan X, Zhang Z, Xiao Z, Xu Q, Liang C, Wang X (2012) Catal Lett 142:788–793

    Article  CAS  Google Scholar 

  9. Lagrost C, Preda L, Volanschi E, Hapiot PJ (2005) Electroanal Chem 585:1–7

    Article  CAS  Google Scholar 

  10. Magdalene RM, Leelamani EG, Gowda NMN (2004) J Mol Catal A Chem 223:17–20

    Article  CAS  Google Scholar 

  11. Sorribes I, Liu L, Corma A (2017) ACS Catal 7:2698–2708

    Article  CAS  Google Scholar 

  12. Tian M, Cui X, Yuan M, Yang J, Ma J, Dong Z (2017) Green Chem 19:1548–1554

    Article  CAS  Google Scholar 

  13. Torres CC, Jimenez VA, Campos CH, Alderete JB, Dinamarca R, Bustamente TM, Pawelec B (2018) Mol Catal 447:21–27

    Article  CAS  Google Scholar 

  14. Uberman PM, Garcia CS, Rodriguez JR, Martin SE (2017) Green Chem 19:739–748

    Article  CAS  Google Scholar 

  15. Ovoshchnikov DS, Donoeva BG, Williamson BE, Golovko VB (2014) Catal Sci Technol 4:752–757

    Article  CAS  Google Scholar 

  16. Orlandi M, Tosi F, Bonsignore M, Benaglia M (2015) Org Lett 17:3941–3943

    Article  CAS  Google Scholar 

  17. Lu H, Geng Z, Li J, Zou D, Wu Y, Wu Y (2016) Org Lett 18:2774–2776

    Article  CAS  Google Scholar 

  18. Dreyer DR, Jia HP, Bielawski CW (2010) Angew Chem Int Ed 49:6813–6816

    CAS  Google Scholar 

  19. Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ, Loh KP (2012) Nat Commun 3:1298

    Article  Google Scholar 

  20. Kazaoui S, Minami N, Jacquemin R, Kataura H, Achiba Y (1999) Phys Rev B 19:62–65

    Google Scholar 

  21. Chen W (2010) Doped nanomaterials and nanodevices. University of Texas at Arlington, USA

    Google Scholar 

  22. Thombal PR, Thombal RS, Han SS (2020) RSC Adv 10:474–481

    Article  CAS  Google Scholar 

  23. Thombal RS, Jadhav VH (2015) Appl Catal A Gen 499:213–216

    Article  CAS  Google Scholar 

  24. Gao L, Ying D, Shen T, Zheng Y, Cai J, Wang D, Zhang L (2020) ACS Sustainable Chem Eng 8:10881–10891

    CAS  Google Scholar 

  25. Shen W, Fan W (2013) J Mater Chem A 1:999–1013

    Article  CAS  Google Scholar 

  26. Thombal PR, Han SS (2018) Biofuel Res J 5:886–893

    Article  CAS  Google Scholar 

  27. Thombal PR, Thombal RS, Han SS (2021) Renew Sust Energ Rev 135:110218

    Article  CAS  Google Scholar 

  28. Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J (2019) Energy Environ Sci 12:322–333

    Article  CAS  Google Scholar 

  29. Jiang MH, Cai D, Tan N (2017) Int J Electrochem Sci 12:7154–7165

    Article  CAS  Google Scholar 

  30. Chu H, Shao C, Qiu S, Zou Y, Xiang C, Xu F, Sun L (2018) Inorg Chem Front 5:225–232

    Article  CAS  Google Scholar 

  31. Hu L, Peng F, Xia D, He H, He C, Fang Z, Yang J, Tian S, Sharma VK, Shu D (2018) ACS Sustain Chem Eng 6:17391–17401

    Article  CAS  Google Scholar 

  32. Liang Q, Ye L, Huang Z, Xu Q, Bai Y, Kang F, Yang Q (2014) Nanoscale 6:13831–13837

    Article  CAS  Google Scholar 

  33. Yuan W, Feng Y, Xie A, Zhang X, Huang F, Li S, Zhang X, Shen Y (2016) Nanoscale 8:8704–8711

    Article  CAS  Google Scholar 

  34. Gao L, Ma J, Li S, Liu D, Xu D, Cai J, Chen L, Xie J, Zhang L (2019) Nanoscale 11:12626–12636

    Article  CAS  Google Scholar 

  35. Liao C, Liu B, Chi Q, Zhang Z (2018) ACS Appl Mater Inter 10:44421–44429

    Article  CAS  Google Scholar 

  36. Fujita S, Watanabe H, Katagiri A, Yoshida H, Arai M (2014) J Mol Catal A Chem 393:257–262

    Article  CAS  Google Scholar 

  37. Xiong W, Wang Z, He S, Hao F, Yang Y, Lv Y, Zhang W, Liu P, Ha L (2020) Appl Catal 260:118105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) [grant numbers 2020R1A2C1012586, 2019R1I1A3A01062440, 2020R1A6A3A01100150]. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03044512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Soo Han.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thombal, P.R., Rao, K.M., Zo, S. et al. Efficient Metal-Free Catalytic Reduction of Nitro to Amine Over Carbon Sheets Doped with Nitrogen. Catal Lett 152, 538–546 (2022). https://doi.org/10.1007/s10562-021-03651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03651-3

Keywords

Navigation