Skip to main content
Log in

Dry Reforming of Methane over Ni–Al2O3 and Ni–SiO2 Catalysts: Role of Preparation Methods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The production of synthesis gas via the conversion of the two greenhouse gases CO2 and CH4 is an efficient process due to its dual industrial and environmental interest. The catalysts based on Ni–SiO2 and Ni–Al2O3 are typical and suitable for this reaction due to their mechanical strength, their good chemical and thermal stability in addition to their low cost and good availability. In this work, we have compared the catalytic performances of these two types of catalysts prepared by two different synthesis methods in dry reforming of methane (DRM).The results indicate that the catalytic performances are much more dependent on the support properties and that they are deeply influenced by the catalyst synthesis method. The textural properties as shown by N2-physisorption analysis are strongly dependent on the support nature in the case of the catalysts prepared by the microemulsion (ME) method and the alumina-based Ni catalyst has a higher specific surface area and a higher pore volume compared to the SiO2 based one. The XRD, H2-TPR and XPS results indicate that the preparation method has a significant influence on the state of NiO species. A Ni particle in the two Ni–SiO2–ME and Ni–Al2O3–ME catalysts prepared by microemulsion is much smaller. The strong metal support interaction promotes the formation of NiAl2O4 and Ni2SiO4 species respectively during the catalyst preparation process and makes the reduction of corresponding catalysts very difficult which may lead to a decrease in the content of active Ni species and give the Ni–Al2O3–ME catalyst a relatively low catalytic activity in DRM, especially when it is reduced under unfavorable conditions as is the case in this work. However, the strong metal support interaction between Ni and the support is also of beneficial to the formation and stabilization of small Ni particles well dispersed on the support after reduction of the Ni–SiO2–ME catalyst. In this system, the sintering and the carbon deposition are inhibited and the catalyst presents both better activity and stability. The Ni/Al2O3 catalyst exhibits a synergistic effect between the various phases NiO and NiAl2O4 formed during the synthesis process due to the different interactions strength between metal and support, which are in favor of the dispersion and stabilization of NiO species. As a result, Ni/Al2O3 provided with both proper textural properties and this synergistic effect, exhibits superior catalytic performances in term of activity, selectivity and stability in DRM. Despite the formation of carbon over this catalyst, it maintains its stability during a long-term test of more than 66 hours. This is due to the formation of active type of carbon and the delocalization of the Ni active sites on the latter to maintain their activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Özkara-Aydınoğlu Ş, Erhan Aksoylu A (2013) Chem Eng J 216:542–549

    Google Scholar 

  2. Gould TD, Montemore MM, Lubers AM, Ellis LD, Weimer AW, Falconer JL, Will Medlin J (2015) Appl Catal A General 492:107–116

    CAS  Google Scholar 

  3. Ghelamallah M, Granger P (2012) Fuel 97:269–276

    CAS  Google Scholar 

  4. Arbag H, Yasyerli S, Yasyerli N, Dogu G (2010) Int J Hydrog Energy 35:2296–2304

    CAS  Google Scholar 

  5. Damyanova S, Bueno JMC (2003) Appl CatalA General 253:135–150

    CAS  Google Scholar 

  6. Richardson JT, Paripatyadar SA (1990) Appl Catal 61:293–309

    CAS  Google Scholar 

  7. Jó́źwiak WK, Nowosielska M, Rynkowski JM (2005) Appl Catal A General 280:233–244

  8. Ikkour K, Sellam D, Kiennemann A, Tezkratt S, Cherifi O (2009) Catal Lett 132:213–217

    CAS  Google Scholar 

  9. Dacquin J-P, Sellam D, Batiot-Dupeyrat C, Tougerti A, Duprez D, Royer S (2014) Chem SusChem7:631–637

  10. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2006) Energy Fuels 20:923–929

    CAS  Google Scholar 

  11. Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2007) Mater Lett 61:2628–2631

    CAS  Google Scholar 

  12. Sellam D, Ikkour K, Dekkar S, Messaoudi H, Belaid T, Roger AC (2019) BCREC 14:568–578

    CAS  Google Scholar 

  13. Djaidja A, Libs S, Kiennemann A, Barama A (2006) Catal Today 113:194–200

    CAS  Google Scholar 

  14. Liu G, Li Y, Chu W, Shi X, Dai X, Yin Y (2008) Catal Commun 9:1087–1091

    CAS  Google Scholar 

  15. Pan Y, Liu C-J, Shi P (2008) J Power Sources 176:46–53

    CAS  Google Scholar 

  16. Wang S, Lu GQ (1998) Appl Catal A 169:271–280

    CAS  Google Scholar 

  17. Gao J, Hou Z, Guo J, Zhu Y, Zheng X (2008) Catal Today 131:278–284

    CAS  Google Scholar 

  18. Guo J, Lou H, Zhao H, Chai D, Zheng X (2004) Appl Catal A 273:75–82

    CAS  Google Scholar 

  19. York APE, Xiao T, Green MLH (2003) Green Top Catal 22:345–358

    CAS  Google Scholar 

  20. Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH (1991) J Catal 132:117–127

    CAS  Google Scholar 

  21. Requies J, Cabrero MA, Laura Barrio V, Güemez MB, Cambra JF, Arias P, Perez-Alonso FJ, Ojeda MP, Peña MA, Fierro JLG (2005) Appl Catal A 289:214–223

    CAS  Google Scholar 

  22. Choudhary VR, Rajput AM, Mamman AS (1998) J Catal 178:576

    CAS  Google Scholar 

  23. Quek X-Y, Lu D, Cheo WNE, Wang H, Chen Y, Yang Y (2010) Appl Catal B 95:374–382

    CAS  Google Scholar 

  24. Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) J Catal 250:331–341

    CAS  Google Scholar 

  25. Han LJ, Li Y, Bao Z (2015) Appl Catal A General 49:1116–1126

    Google Scholar 

  26. Majewski AJ, Wood J, Bujalski W (2013) Int J Hydrog Energy 38:14531–14541

    CAS  Google Scholar 

  27. Lv X, Chen J-F, Tan Y, Zhang Y (2012) Catal Commun 20:6–11

    CAS  Google Scholar 

  28. Bian Z, Suryawinata IY, Kawi S (2016) Appl Catal B 195:1–8

    CAS  Google Scholar 

  29. Li Z, Li M, Bian Z, Kathiraser Y, Kawi S (2016) Appl Catal B-Environ 188:324–341

    CAS  Google Scholar 

  30. Das S, Ashok J, Bian Z, Dewangan N, Wai M, Du Y, Borgna A, Hidajat K, Kawi S (2018) Appl Catal B: Environ 230:220–236

    CAS  Google Scholar 

  31. Li Z, Kawi S (2018) ChemCatChem 10:2994–3001

    CAS  Google Scholar 

  32. Li Z, Jiang B, Wang Z, Kawi S (2018) J CO2 Utilization 27:238-246

  33. Li Z, Wang Z, Kawi S (2019) ChemCatChem 11:202–224

    CAS  Google Scholar 

  34. He S, Wu H, Yu W, Mo L, Lou H, Zheng X (2009) Int J Hydrog Energy 34:839–843

    CAS  Google Scholar 

  35. He S, Jing Q, Yu W, Mo L, Lou H, Zheng X (2009) Catal Today 148:130–133

    CAS  Google Scholar 

  36. Takahashi R, Sato S, Sodesawa T, Tomiyama S (2005) Appl Catal A General 286:142–147

    CAS  Google Scholar 

  37. Lovell EC, Fuller A, Scott J, Amal R (2016) Appl Catal B Environ 199:155–165

    CAS  Google Scholar 

  38. XY Gao, K Hidajat, S Kawi (2016) J CO2 Utilization 15:146-153

  39. Li Z, Mo L, Kathiraser Y, Kawi S (2014) ACS Catal 4(5):1526–1536

    CAS  Google Scholar 

  40. Boutonnet M, Lögdberg S, Svensson EE (2008) Curr Opin Colloid Interface Sci 13:270–286

    CAS  Google Scholar 

  41. Eriksson S, Nylén U, Rojas S, Boutonnet M (2004) Appl Catal A General 265:207–219

    CAS  Google Scholar 

  42. Kim W-Y, Hayashi H, Kishida M, Nagata H, Wakabayashi K (1998) Appl Catal A General 169:157–164

    CAS  Google Scholar 

  43. Bian Z, Das S, Wai M-H, Hongmanorom P, Sibudjing K (2017) ChemPhysChem 18:3117–3134

    CAS  PubMed  Google Scholar 

  44. Li Z, Das S, Hongmanorom P, Dewangan N, Wai HW, Kawi S (2018) Catal Sci Technol 8:2763–2778

    CAS  Google Scholar 

  45. Xu S, Zhao R, Wang X (2004) Fuel Process Techno 86:123–133

    CAS  Google Scholar 

  46. Shiraz MHA, Rezaei M, Meshkani F (2016) Int J Hydrog Energy 41:6353–6361

    Google Scholar 

  47. Takenaka S, Huri KH, Matsune H, Kishida M (2005) Chem Lett 34(12):1594–1595

    CAS  Google Scholar 

  48. Takenaka S, Umebayashi H, Tanabe E, Matsune H, Kishida M (2007) J Catal 245:392–400

    CAS  Google Scholar 

  49. Takenaka S, Yoshiki O, Hiroshi U, Matsune H, Kishida M (2008) Appl Catal A 351:189–194

    CAS  Google Scholar 

  50. Usman M, Bin WMA, Daud W (2016) RSC Adv 44:38277–38289

    Google Scholar 

  51. Yahi N, Menad SI (2015) Green Process Synth 4(6):479–486

    CAS  Google Scholar 

  52. Takahashi R, Sato S, Toshiaki S, Norifumi N, Satoshi T, Takatoshi K, Satoshi Y (2001) J Nanosci Nanotech 1:169–176

    CAS  Google Scholar 

  53. Tomiyama S, Takahashi R, Sato S, Sodesawa T, Yoshida S (2003) Appl Catal A 241:349–361

    CAS  Google Scholar 

  54. Takahashi R, Sato S, Tomiyama S, Ohashi T, Nakamura N (2007) Microporous Mesoporous Mater 98:107–114

    CAS  Google Scholar 

  55. Sahli N, Petit C, Roger AC, Kennemann A (2006) Catal Today 113:187–193

    CAS  Google Scholar 

  56. Shamskar FR, Rezaei M, Meshkani F (2017) Int J Energy 42:4155–4164

    Google Scholar 

  57. Shang Z, Li S, Li L, Liu G, Liang X (2017) Appl Catal B 201:302–309

    CAS  Google Scholar 

  58. Jiménez-González C, Boukha Z, Delgado JJ, Cauqui MA, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R (2013) Appl Catal A General 466:9–20

    Google Scholar 

  59. Guohui L, Hill LM (2006) Appl Catal A General 301:16–24

    Google Scholar 

  60. Hao Z, Zhu Q, Jiang Z, Hou B, Li H (2009) Fuel ProcessTechn 90:113–121

    CAS  Google Scholar 

  61. Fu Y, Wu Y, Cai W, Yue B, He H (2015) Sci China 58:148–155

    CAS  Google Scholar 

  62. Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210–15216

    CAS  PubMed  Google Scholar 

  63. Akia M, Alavi SM, Rezaei M, Yan Z-F (2009) Microporous Mesoporous Mater 122:72–78

    CAS  Google Scholar 

  64. Akri M, Chafik T, Granger P, Ayrault P, Batiot-Dupeyrat C (2016) Fuel 178:139–147

    CAS  Google Scholar 

  65. Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li C-Z, Garcia-Perez M (2010) Bioresource Technol 101:9688–9699

    CAS  Google Scholar 

  66. Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Bioresource Technol 150:220–227

    CAS  Google Scholar 

  67. Xingkun Ning, Zhanjie Wang, Zhidong Zhang (2015) Fermi level shifting, charge transfer and induced magnetic coupling at La0.7Ca0.3MnO3/LaNiO3 interface. Sci Rep 5:8460

  68. Kim S, Kim MC, Choi SH, Kim KJ, Hwang HN, Hwang CC (2007) Appl Phys Lett 91:103–113

    Google Scholar 

  69. Benrabaa R, Barama A, Boukhlouf H, Guerrero-Caballero J, Rubbens A, Bordes-Richard E, Löfberg A, Vannier R-N (2017) Int J Hydrog Energy 42:12989–12996

    CAS  Google Scholar 

  70. Sivaiah MV, Petit S, Barrault J, Batiot-Dupeyrat C, Valange S (2010) Catal Today 157:397–403

    CAS  Google Scholar 

  71. Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J (2005) Catal Lett 104:181–189

    CAS  Google Scholar 

  72. Wang Z, Xun H (2017) Fuel Process Technol 155:246–251

    CAS  Google Scholar 

  73. Challiwala MS, Ghouri MM, Linke P, El-Halwagi M, Elbashir NO (2017) J CO2 Utilization 17:99–111

  74. Woo Han J, Kim C, Park JS, Lee H (2014) ChemSusChem 7:451–456

    PubMed  Google Scholar 

  75. Gould TD, Izar A, Weimer AW, Falconer JL, Medlin JW (2014) ACS Catal 4:2714–2717

  76. Zhang J, Li F (2015) Appl Catal B Environ 176–177:513–521

    Google Scholar 

  77. Norval SV, Thomsib SJ, Webb G (1980) Appl Surface Sci 4:49–51

    Google Scholar 

  78. Segner J, Campbell CT, Doyen G, Ertl G (1984) Surface Sci 138:505–523

    CAS  Google Scholar 

  79. Kuijpers EGM, Breedijk AK, van der Wal WJJ, Geus JW (1983) J Catal 81:429–439

    CAS  Google Scholar 

  80. Beebe Jr. TP, Wayne Goodman D, Kay BD (1987) J Chem Phys 87:2305– 2315

  81. Das S, Sengupta M, Patel J, Bordoloi A (2017) Appl Catal A General 545:113–126

    CAS  Google Scholar 

  82. Chen Y, Ren J (1994) Catal Lett 29:39–48

    CAS  Google Scholar 

  83. Baktash E, Littlewood P, Schomäcker R, Thomas A, Stair PC (2015) Appl Catal B Environ 179:122–127

    CAS  Google Scholar 

  84. Wang S, Qing Lu G (1998) Appl Catal B Environ 1(16):269–277

  85. Enger BC, Lodeng R, Walmsley J, Holmen A (2010) Appl Catal A General 383:119–127

    CAS  Google Scholar 

  86. Duprez D, Micheli MCD, Marécot P, Barbier J, Ferreti OA, Ponzi EN (1990) J Catal 124:324–335

    CAS  Google Scholar 

  87. Hao Z, Zhu Q, Lei Z, Li H (2008) Powder Technol 182:474–479

    CAS  Google Scholar 

  88. Jiang H, Li H, Hongbin X, Zhang Y (2007) Fuel Process Technol 88:988–995

    CAS  Google Scholar 

  89. Bang S, Hong E, Baek SW, Shin C-H (2018) Catal Today 303:100–105

    CAS  Google Scholar 

  90. Nair MM, Kaliaguine S, Kleitz F (2014) ACS Catal 4:3837–3846

    CAS  Google Scholar 

  91. Horvath A, Stefler G, Geszti O, Kienneman A (2011) Catal Today 169:102–111

    CAS  Google Scholar 

  92. Kan H, Lee H (2010) Appl Catal B 97:108–114

    CAS  Google Scholar 

  93. Pan YX, Liu C-J, Cui L (2008) Catal Lett 123:96–101

    CAS  Google Scholar 

  94. Guo JJ, Lou H (2007) Carbon 45:1314–1321

    CAS  Google Scholar 

  95. Zhang WD, Liu BS (2005) Appl Catal A General 292:138–143

    CAS  Google Scholar 

  96. Effendi A, Hellgardt K, Zhang ZG, Yoshida T (2003) Catal Commun 4:203–207

    CAS  Google Scholar 

  97. Wang S, Lu GQ (1997) Appl Catal A General 167:271–280

    Google Scholar 

  98. Xu Y, Du X, Li J, Wang P (2019) J Fuel Chem Technol 47:200–208

    Google Scholar 

  99. Zhang S, Wang J (2008) Catal Commun 9:995–1000

    CAS  Google Scholar 

  100. Tracz E, Scholz R, Borowiecki T (1990) Appl Calal 66:133–147

    CAS  Google Scholar 

  101. Swaan HM, Kroll VCH, Martin GA, Mirodatos C (1994) Catal Today 21:571–578

    CAS  Google Scholar 

  102. Kroll VCH, Swaan HM, Mirodatos C (1996) J Catal 161:409–422

    CAS  Google Scholar 

  103. de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis B, Mattos LV, Noronha F (2009) J Catal 268:268

    Google Scholar 

  104. Castro-Luna AE, Iriarte ME (2008) Appl Catal A 343:10–15

    CAS  Google Scholar 

  105. José-Aanso DS, Juan-Juan J, Illan-Gomez MJ, Román-Martínez C (2009) Catal Appl A 371:54–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dekkar.

Ethics declarations

Conflict of interest

All authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dekkar, S., Tezkratt, S., Sellam, D. et al. Dry Reforming of Methane over Ni–Al2O3 and Ni–SiO2 Catalysts: Role of Preparation Methods. Catal Lett 150, 2180–2199 (2020). https://doi.org/10.1007/s10562-020-03120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03120-3

Keywords

Navigation