Skip to main content
Log in

Isoprene Synthesis Using MIL-101(Cr) Encapsulated Silicotungstic Acid Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A single-stage synthesis of isoprene from methyl tert-butyl ether (MTBE) and formalin in an organic-aqueous two-phase system was studied by using solid acid catalysts, i.e., USY zeolite, silicotungstic acid (STA) 25 wt% encapsulated in MIL-101(Cr) (STA25@MIL-101), and STA 25 wt% encapsulated in SBA-15 (STA25@SBA-15). From preliminary experiments, the catalytic activity decreased in the order: STA25@MIL-101 > SBA25@SBA-15 > USY zeolite. This suggested that isoprene formation was favored with high surface area and high acid strength of catalyst. Then, the porous hybrid material of a MIL-101 metal organic framework and STA was studied in more detail. MIL-101 was not efficient for isoprene synthesis at mild reaction condition. On increasing STA loading, which was well correlated with the Brӧnsted acid property, the catalyst activity increased in the order: MIL-101 < STA30@MIL-101 < STA60@MIL-101. The high acidity catalyst gave high isoprene yield at optimum low temperature and low side reaction products. For the STA30@MIL-101 and STA60@MIL-101 catalysts, the isoprene yield could be sustained at 18.5% (0.4% SD) and 30.0% (1.5% SD), respectively over three recycling runs. It is apparent that no STA leaching from the low STA loading catalyst occurred.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weitz HM, Loser E (2000) Isoprene. Ullmann’s encyclopedia of industrial chemistry. 2. Wiley, New York, pp 849–875

    Google Scholar 

  2. Ezinkwo GO, Tretjakov VF, Talyshinky RM et al (2013) Overview of the catalytic production of isoprene from different raw materials; prospects of isoprene production from bio-ethanol. Catal Sustain Energy 1:100–111

    CAS  Google Scholar 

  3. Ai M (1987) The formation of isoprene by means of a vapor-phase prins reaction between formaldehyde and isobutene. J Catal 106(1):280–286

    CAS  Google Scholar 

  4. Ivanova I, Sushkevich VL, Kolyagin YG et al (2013) Catalysis by coke deposits: synthesis of isoprene over solid catalysts. Angew Chem Int Edit 125:13199–13202

    Google Scholar 

  5. Dumitriu E, Trong On D, Kaliaguine S (1997) Isoprene by prins condensation over acidic molecular sieves. J Catal 170(1):150–160

    CAS  Google Scholar 

  6. Dumitriu E, Hulea V, Fechete I et al (1999) Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure. Appl Catal A 181(1):15–28

    CAS  Google Scholar 

  7. Sushkevich VL, Ordomsky VV, Ivanova II (2012) Synthesis of Isoprene from Formaldehyde and Isobutene over Phosphate Catalysts. Appl Catal A 441–442:21–29

    Google Scholar 

  8. Yu X, Zhu W, Zhai S et al (2016) Prins condensation for the synthesis of isoprene from isobutylene and formaldehyde over sillica-supported H3SiW12O40 catalysts. Reac Kinet Mech Cat. 117:761–771

    CAS  Google Scholar 

  9. Sushkevich VL, Ordomsky VV, Ivanova II (2016) Isoprene synthesis from formaldehyde and isobutene over Keggin-type heteropolyacids supported on silica. Catal Sci Technol 6(16):6354–6364

    CAS  Google Scholar 

  10. Qi Y, Cui L, Li Y et al (2018) Development a facile way to restore reactivity of deactivated phosphate catalysts for prins reaction with the assistance of carbon deposition. Catal Commun 106:11–15

    CAS  Google Scholar 

  11. Vavilov DI, Akhmedyanova RA, Liakumovich AG et al (2010) Synthesis of isoprene from 1,3-dioxolane and isobutylene. Russ J Appl Chem. 83(9):1598–1601

    CAS  Google Scholar 

  12. Burkin KE, Akhmedyanova RA (2011) Novel ecological and energy saving method of single-stage synthesis of isoprene. Chem Sustain Dev 19:531–535

    Google Scholar 

  13. Ninagawa Y, Yamada O, Renge T, et al (1986) Inventors; Kuraray Co. Ltd., assignee. Process for Producing Isoprene. US patent US Patent 4593145

  14. Wang S-S, Yang G-Y (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115(11):4893–4962

    CAS  PubMed  Google Scholar 

  15. Ivan VK (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Google Scholar 

  16. Kim JK, Choi JH, Song JH et al (2012) Etherification of n-butanol to di-n-butyl ether over HnXW12O40 (X = Co2+, B3+, Si4+, and P5+) Keggin heteropolyacid catalysts. Catal Commun 27:5–8

    CAS  Google Scholar 

  17. Tundo P, Romanelli GP, Vázquez PG et al (2010) Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by heteropolyacids. Catal Commun 11(15):1181–1184

    CAS  Google Scholar 

  18. Sun Y, Wang H, Shen J et al (2009) Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts. Catal Commun 10(5):678–681

    CAS  Google Scholar 

  19. Songsiri N, Rempel GL, Prasassarakich P (2016) Liquid-phase synthesis of isoprene from methyl tert-butyl ether and formalin using Keggin-type heteropolyacids. Ind Eng Chem Res 55(33):8933–8940

    CAS  Google Scholar 

  20. Songsiri N, Rempel GL, Prasassarakich P (2017) Liquid-phase synthesis of isoprene from MTBE and formalin using cesium salts of silicotungstic acid. J Mol Catal 439(Supplement C):41–49

    CAS  Google Scholar 

  21. Zhou Y, Chen G, Long Z et al (2014) Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Adv 4(79):42092–42113

    CAS  Google Scholar 

  22. Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34(11):2366–2388

    CAS  Google Scholar 

  23. Yang H, Li J, Wang L et al (2013) Exceptional activity for direct synthesis of phenol from benzene over PMoV@MOF with O2. Catal Commun 35:101–104

    CAS  Google Scholar 

  24. Wang W, Li Y, Zhang R et al (2011) Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation. Catal Commun 12(10):875–879

    CAS  Google Scholar 

  25. Wen M, Kuwahara Y, Mori K et al (2016) Enhancement of catalytic activity over AuPd nanoparticles loaded metal organic framework under visible light irradiation. Top Catal 59(19):1765–1771

    CAS  Google Scholar 

  26. Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Google Scholar 

  27. Leus K, Bogaerts T, De Decker J et al (2016) Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. Microporous Mesoporous Mater. 226(Supplement C):110–116

    CAS  Google Scholar 

  28. Qadir N, Said SAM, Bahaidarah HM (2015) Structural stability of metal organic frameworks in aqueous media—controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous Mesoporous Mater 201:61–90

    CAS  Google Scholar 

  29. Buragohain A, Couck S, Van Der Voort P et al (2016) Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X = –F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials. J Solid State Chem. 238(Supplement C):195–202

    CAS  Google Scholar 

  30. Wee LH, Bonino F, Lamberti C et al (2014) Cr-MIL-101 encapsulated keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. Green Chem 16(3):1351–1357

    CAS  Google Scholar 

  31. Deng Q, Nie G, Pan L et al (2015) Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem 17(8):4473–4481

    CAS  Google Scholar 

  32. Zang Y, Shi J, Zhao X et al (2013) Highly stable chromium(III) terephthalate metal organic framework (MIL-101) encapsulated 12-tungstophosphoric heteropolyacid as a water-tolerant solid catalyst for hydrolysis and esterification. Reac Kinet Mech Cat 109(1):77–89

    CAS  Google Scholar 

  33. Juan-Alcañiz J, Ramos-Fernandez EV, Lafont U et al (2010) Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts. J Catal 269(1):229–241

    Google Scholar 

  34. Sheng X, Kong J, Zhou Y et al (2014) Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework. Microporous Mesoporous Mater 187:7–13

    CAS  Google Scholar 

  35. Rafiee E, Joshaghani M, Eavani S et al (2008) A revision for the synthesis of β-enaminones in solvent free conditions: efficacy of different supported heteropoly acids as active and reusable catalysts. Green Chem 10(9):982–989

    CAS  Google Scholar 

  36. Kurti L, Czako B (2005) Prins reaction. Strategic applications of named reactions in organic synthesis. Elsevier, Amsterdam, p 364

    Google Scholar 

  37. Adam JM, Clapp TV (1986) Reactions of the conjugated dienes butadiene and isoprene alone and with methanol over ion-exchanged montmorillonites. Clay Clay Miner. 34:287–294

    Google Scholar 

  38. Rocchiccioli-Deltcheff C, Fournier M, Franck R et al (1983) Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg Chem 22(2):207–216

    CAS  Google Scholar 

  39. Treacy MMJ, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam

    Google Scholar 

  40. Maaz S, Rose M, Palkovits R (2016) Systematic investigation of the pore structure and surface properties of SBA-15 by water vapor physisorption. Microporous Mesoporous Mater 220:183–187

    CAS  Google Scholar 

  41. Canivet J, Bonnefoy J, Daniel C et al (2014) Structure-property relationships of water adsorption in metal-organic frameworks. New J Chem 38(7):3102–3111

    CAS  Google Scholar 

  42. Liu L, Wang B, Du Y et al (2015) Supported H4SiW12O40/Al2O3 solid acid catalysts for dehydration of glycerol to acrolein: evolution of catalyst structure and performance with calcination temperature. Appl Catal A 489:32–41

    CAS  Google Scholar 

  43. Qiu J, Wang G, Zhang Y et al (2015) Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel 147:195–202

    CAS  Google Scholar 

  44. Bromberg L, Diao Y, Wu H et al (2012) Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chem Mater 24(9):1664–1675

    CAS  Google Scholar 

  45. Zhang Y, Degirmenci V, Li C et al (2011) Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. Chemsuschem 4(1):59–64

    PubMed  Google Scholar 

  46. Maksimchuk NV, Kovalenko KA, Arzumanov SS et al (2010) Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg Chem 49(6):2920–2930

    CAS  PubMed  Google Scholar 

  47. Canioni R, Roch-Marchal C, Sécheresse F et al (2011) Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J Mater Chem 21(4):1226–1233

    CAS  Google Scholar 

  48. Ribeiro S, Barbosa ADS, Gomes AC et al (2013) Catalytic oxidative desulfurization systems based on Keggin phosphotungstate and metal-organic framework MIL-101. Fuel Process Technol 116:350–357

    CAS  Google Scholar 

  49. Khder AERS, Hassan HMA, El-Shall MS (2014) Metal-organic frameworks with high tungstophosphoric acid loading as heterogeneous acid catalysts. Appl Catal A 487:110–118

    CAS  Google Scholar 

  50. Kong Y, Cheng X, An H et al (2018) Preparation and characterization of H4SiW12O40@MIL-100(Fe) and its catalytic performance for synthesis of 4,4′-MDA. Chin J Chem Eng 26(2):330–336

    CAS  Google Scholar 

  51. Bardin BB, Bordawekar SV, Neurock M et al (1998) Acidity of Keggin-type heteropolycompounds evaluated by catalytic probe reactions, sorption microcalorimetry, and density functional quantum chemical calculations. J Phys Chem B 102(52):10817–10825

    CAS  Google Scholar 

  52. Janik MJ, Davis RJ, Neurock M (2004) A first principles analysis of the location and affinity of protons in the secondary structure of phosphotungstic acid. J Phys Chem B 108(33):12292–12300

    CAS  Google Scholar 

  53. Ganapathy S, Fournier M, Paul JF et al (2002) Location of protons in anhydrous Keggin heteropolyacids H3PMo12O40 and H3PW12O40 by 1H{31P}/31P{1H} REDOR NMR and DFT quantum chemical calculations. J Am Chem Soc 124(26):7821–7828

    CAS  PubMed  Google Scholar 

  54. Herbst A, Khutia A, Janiak C (2014) Brønsted instead of lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg Chem 53(14):7319–7333

    CAS  PubMed  Google Scholar 

  55. Berry FJ, Derrick GR, Mortimer M (2014) Identification and characterisation of stable phases of silicotungstic acid, H4SiW12O40·nH2O. Polyhedron 68:17–22

    CAS  Google Scholar 

  56. Jürgensen A, Moffat JB (1995) The stability of 12-molybdosilicic, 12-tungstosilicic, 12-molybdophosphoric and 12-tungstophosphoric acids in aqueous solution at various pH. Catal Lett 34(1):237–244

    Google Scholar 

  57. Akgül G, Kruse A (2013) Hydrothermal disproportionation of formaldehyde at subcritical conditions. J Supercrit Fluids. 73(Supplement C):43–50

    Google Scholar 

  58. Bajorek JJS, Battaglia R, Pratt G et al (1974) A modified prins reaction applicable to conjugated dienes. J Chem Soc 1:1243–1245

    Google Scholar 

  59. Peel R, Sutherland JK (1974) An alternative synthesis of the corey prostaglandin aldehyde. J Chem Soc 4:151–153

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially and technically supported by Bangkok Synthetics Co., Ltd. We are grateful to Dr. Steffen Hausdorf, Technische Universität Dresden, for the permission of the use of MIL-101(Cr) building block as presented in the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Garry L. Rempel or Pattarapan Prasassarakich.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Songsiri, N., Rempel, G.L. & Prasassarakich, P. Isoprene Synthesis Using MIL-101(Cr) Encapsulated Silicotungstic Acid Catalyst. Catal Lett 149, 2468–2481 (2019). https://doi.org/10.1007/s10562-019-02837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02837-0

Keywords

Navigation