Skip to main content
Log in

Phenylene and Isatin Based Bifunctional Mesoporous Organosilica Supported Schiff-Base/Manganese Complex: An Efficient and Recoverable Nanocatalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel bifunctional periodic mesoporous organosilica supported isatin-Schiff-base/manganese complex [BPMO@ISB/Mn(II)] is prepared, characterized and its catalytic performance is investigated in the synthesis of dihydropyrano[3,2-c]chromene derivatives. The BPMO@ISB was prepared via grafting of 3-aminopropyltrimethoxysilane (APTS) on a phenylene based PMO followed by treatment with isatin. The BPMO@ISB was then reacted with Mn(NO3)2·4H2O to afford the BPMO@ISB/Mn(II) nanocatalyst. This catalyst was characterized using Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), low angle powder X-ray diffraction (LAPXRD) analysis and transmission electron microscopy (TEM). The BPMO@ISB/Mn(II) nanocatalyst was successfully used in one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives at room temperature. In addition, the stability, recyclability and reusability of designed nanocatalyst were studied under applied conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Y, Zhao Y, Xia C (2009) J Mol Catal A 306(1–2):107–112

    Article  CAS  Google Scholar 

  2. Wight A, Davis M (2002) Chem Rev 102:3589–3614 102

    Article  CAS  PubMed  Google Scholar 

  3. Nikoorazm M, Ghorbani-Choghamarani A, Noori N, Tahmasbi B (2016) Appl Organomet Chem 30:843–851

    Article  CAS  Google Scholar 

  4. Zhang L, Feng C, Gao S, Wang Z, Wang C (2015) Catal Commun 61:21–25

    Article  CAS  Google Scholar 

  5. Jin M, Park J-N, Shon JK, Kim JH, Li Z, Park Y-K, Kim JM (2012) Catal Today 185:183–190

    Article  CAS  Google Scholar 

  6. Ghosh S, Dey R, Ahammed S, Ranu BC (2014) Clean Technol Environ Policy 16:1767–1771

    Article  CAS  Google Scholar 

  7. Veisi H, Kordestani D, Faraji AR (2014) J Porous Mater 21:141–148

    Article  CAS  Google Scholar 

  8. Díaz U, Brunel D, Corma A (2013) Chem Soc Rev 42:4083–4097

    Article  CAS  PubMed  Google Scholar 

  9. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) J. Am. Chem. Soc. 9611-14 121

  10. Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Nature 402:867–871

    Article  CAS  Google Scholar 

  11. Melde BJ, Holland BT, Blanford CF, Stein A (1999) Chem Mater 11:3302–3308

    Article  CAS  Google Scholar 

  12. Stein A (2003) Adv Mater 15:763–775

    Article  CAS  Google Scholar 

  13. Wahab MA, Beltramini JN (2015) RSC Adv 5:79129–79151

    Article  CAS  Google Scholar 

  14. Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA (2005) Acc Chem Res 38:305–312

    Article  CAS  PubMed  Google Scholar 

  15. Hunks WJ, Ozin GA (2005) J Mater Chem 15:3716–3724

    Article  CAS  Google Scholar 

  16. Yaghoubi A, Dekamin MG (2017) Chem Sel 2:9236–9243

    CAS  Google Scholar 

  17. Dekamin MG, Arefi E, Yaghoubi A (2016) RSC Adv 6:86982–86988

    Article  CAS  Google Scholar 

  18. Yaghoubi A, Dekamin MG, Karimi B (2017) Catal Lett 147:2656–2663

    Article  CAS  Google Scholar 

  19. Xia LY, Zhang MQ, Rong MZ, Xu WM (2010) Phys Chem Chem Phys 12:10569–10576

    Article  CAS  PubMed  Google Scholar 

  20. Olkhovyk O, Pikus S, Jaroniec M (2005) J Mater Chem 15:1517–1519

    Article  CAS  Google Scholar 

  21. Alauzun J, Mehdi A, Reyé C, Corriu RJ (2007) J Mater Chem 17:349–356

    Article  CAS  Google Scholar 

  22. Johnson-White B, Zeinali M, Shaffer KM, Patterson CH, Charles PT, Markowitz MA (2007) Biosens Bioelectron 22:1154–1162

    Article  CAS  PubMed  Google Scholar 

  23. Inagaki S, Guan S, Yang Q, Kapoor MP, Shimada T (2008) Chem Commun. https://doi.org/10.1039/b714163g

    Article  Google Scholar 

  24. Takeda H, Goto Y, Maegawa Y, Ohsuna T, Tani T, Matsumoto K, Shimada T, Inagaki S (2009) Chem Commun 6032–6034

  25. Modak A, Mondal J, Aswal VK, Bhaumik A (2010) J Mater Chem 20:8099–8106

    Article  CAS  Google Scholar 

  26. Fryxell GE, Liu J, Hauser TA, Nie Z, Ferris KF, Mattigod S, Gong M, Hallen RT (1999) Chem Mater 11:2148–2154

    Article  CAS  Google Scholar 

  27. Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258–5261

    Article  CAS  Google Scholar 

  28. Liu A, Hidajat K, Kawi S, Zhao D (2000) Chem Commun 13:1145–1146

    Article  Google Scholar 

  29. Walcarius A, Mercier L (2010) J Mater Chem 20:4478–4511

    Article  CAS  Google Scholar 

  30. Wang W, Grozea D, Kohli S, Perovic DD, Ozin GA (2011) ACS Nano 5:1267–1275

    Article  CAS  PubMed  Google Scholar 

  31. Moorthy MS, Park S-S, Fuping D, Hong S-H, Selvaraj M, Ha C-S (2012) J Mater Chem 22:9100–9108

    Article  CAS  Google Scholar 

  32. Karimi B, Khorasani M, Bakhshandeh Rostami F, Elhamifar D, Vali H (2015) ChemPlusChem 80:990–999

    Article  CAS  Google Scholar 

  33. Veisi H, Azadbakht R, Saeidifar F, Abdi MR (2017) Catal Lett 147:976–986

    Article  CAS  Google Scholar 

  34. Sadeghzadeh SM (2016) Catal Lett 146:2555–2565

    Article  CAS  Google Scholar 

  35. Hajjami M, Rahmani S (2015) J Porous Mater 22:1265–1274

    Article  CAS  Google Scholar 

  36. Hajjami M, Kolivand S (2016) Appl Organomet Chem 30:282–288

    Article  CAS  Google Scholar 

  37. Hajjami M, Shiri L, Jahanbakhshi A (2015) Appl Organomet Chem 29:668–673

    Article  CAS  Google Scholar 

  38. Modak A, Mondal J, Bhaumik A (2012) Green Chem 14:2840–2855

    Article  CAS  Google Scholar 

  39. Modak A, Nandi M, Bhaumik A (2012) Catal Today 198:45–51

    Article  CAS  Google Scholar 

  40. Verma S, Nandi M, Modak A, Jain SL, Bhaumik A (2011) Adv Synth Catal 353:1897–1902

    Article  CAS  Google Scholar 

  41. Horiuchi Y, Do Van D, Yonezawa Y, Saito M, Dohshi S, Kim T-H, Matsuoka M (2015) RSC Adv 5:72653–72658

    Article  CAS  Google Scholar 

  42. Zhu F-X, Wang W, Li H-X (2011) J Am Chem Soc 133:11632–11640

    Article  CAS  PubMed  Google Scholar 

  43. Huang J, Zhu F, He W, Zhang F, Wang W, Li H (2010) J Am Chem Soc 132:1492–1493

    Article  CAS  PubMed  Google Scholar 

  44. Yang Q, Liu J, Zhang L, Li C (2009) J Mater Chem 19:945–1955

    Google Scholar 

  45. Hoffmann F, Fröba M (2011) Chem Soc Rev 40:608–620

    Article  CAS  PubMed  Google Scholar 

  46. Sasidharan M, Bhaumik A (2013) ACS Appl Mater Interfaces 5:2618–2625

    Article  CAS  PubMed  Google Scholar 

  47. Elhamifar D, Karimi B, Moradi A, Rastegar J (2014) ChemPlusChem 79:1147–1152

    Article  CAS  Google Scholar 

  48. Wahab MA, Kim I, Ha C-S (2004) J Solid State Chem 177:3439–3447

    Article  CAS  Google Scholar 

  49. Elhamifar D, Nasr-Esfahani M, Karimi B, Moshkelgosha R, Shábani A (2014) ChemCatChem 6:2593–2599

    Article  CAS  Google Scholar 

  50. Na W, Wei Q, Lan J-N, Nie Z-R, Sun H, Li Q-Y (2010) Microporous Mesoporous Mater 134:72–78

    Article  CAS  Google Scholar 

  51. Elhamifar D, Kazempoor S, Karimi B (2016) Catal Sci Technol 6:4318–4326

    Article  CAS  Google Scholar 

  52. Elhamifar D, Kazempoor S (2016) J Mol Catal A 415:74–81

    Article  CAS  Google Scholar 

  53. Shylesh S, Wagener A, Seifert A, Ernst S, Thiel WR (2010) Angew Chem Int Ed 49:184–187

    Article  CAS  Google Scholar 

  54. Wei Q, Liu L, Nie Z-R, Chen H-Q, Wang Y-L, Li Q-Y, Zou J-X (2007) Microporous Mesoporous Mater 101:381–387

    Article  CAS  Google Scholar 

  55. Cho E-B, Kim D, Jaroniec M (2009) Langmuir 25:13258–13263

    Article  CAS  PubMed  Google Scholar 

  56. Foye W (1991) Padova, Italy 416

  57. Wu JY-C, Fong W-F, Zhang J-X, Leung C-H, Kwong H-L, Yang M-S, Li D, Cheung H-Y (2003) Eur J Pharmacol 473:9–17

    Article  CAS  PubMed  Google Scholar 

  58. Raj T, Bhatia RK, Sharma M, Saxena A, Ishar M (2010) Eur J Med Chem 45:790–794

    Article  CAS  PubMed  Google Scholar 

  59. Rueping M, Sugiono E, Merino E (2008) Chemistry A 14:6329–6332

    CAS  Google Scholar 

  60. Moon D-O, Kim K-C, Jin C-Y, Han M-H, Park C, Lee K-J, Park Y-M, Choi YH, Kim G-Y (2007) Int Immunopharmacol 7:222–229

    Article  CAS  PubMed  Google Scholar 

  61. Konkoy C, Fick D, Cai S, Lan N, Keana J, Int PCT (2000) Appl WO 0075123:2001, p. 29313a Chem. Abstr

  62. Shaterian H, Oveisi A (2011) J Iran Chem Soc 8:545–552

    Article  CAS  Google Scholar 

  63. Brahmachari G, Banerjee B (2013) ACS Sustain Chem Eng 2:411–422

    Article  CAS  Google Scholar 

  64. Elhamifar D, Elhamifar D, Shojaeipoor F (2017) J Mol Catal A 426:198–204

    Article  CAS  Google Scholar 

  65. Elhamifar D, Ardeshirfard H (2017) J Colloid Interface Sci 505:1177–1184

    Article  CAS  PubMed  Google Scholar 

  66. Elhamifar D, Yari O, Karimi B (2017) J Colloid Interface Sci 500:212–219

    Article  CAS  PubMed  Google Scholar 

  67. Elhamifar D, Badin P, Karimipoor G (2017) J Colloid Interface Sci 499:120–127

    Article  CAS  PubMed  Google Scholar 

  68. Elhamifar D, Ramazani Z, Norouzi M, Mirbagheri R (2018) J Colloid Interface Sci 511:392–401

    Article  CAS  PubMed  Google Scholar 

  69. Norouzi M, Elhamifar D, Mirbagheri R, Ramazani Z (2018) J Taiwan Inst Chem Eng 89:234–244

    Article  CAS  Google Scholar 

  70. Elhamifar D, Shabani A (2014) Chem Eur J 20:3212–3217

    Article  CAS  PubMed  Google Scholar 

  71. Dekamin MG, Alikhani M, Javanshir S (2016) Green Chem Lett Rev 9:96–105

    Article  CAS  Google Scholar 

  72. Dekamin MG, Peyman SZ, Karimi Z, Javanshir S, Naimi-Jamal MR, Barikani M (2016) Int J Biol Macromol 87:172–179

    Article  CAS  PubMed  Google Scholar 

  73. Khurana JM, Nand B, Saluja P (2010) Tetrahedron 66:5637–5641

    Article  CAS  Google Scholar 

  74. Khan AT, Lal M, Ali S, Khan MM (2011) Tetrahedron Lett 52:5327–5332

    Article  CAS  Google Scholar 

  75. Pore D, Undale K, Dongare B, Desai U (2009) Catal Lett 132:104–108

    Article  CAS  Google Scholar 

  76. Abdolmohammadi S, Balalaie S (2007) Tetrahedron Lett 48:3299–3303

    Article  CAS  Google Scholar 

  77. Dekamin MG, Eslami M, Maleki A (2013) Tetrahedron 69:1074–1085

    Article  CAS  Google Scholar 

  78. Abdollahi-Alibeik M, Nezampour F (2013) React Kinet Mech Catal 108:213–229

    Article  CAS  Google Scholar 

  79. Moghaddas M, Davoodnia A (2015) Res Chem Intermed 41:4373–4386

    Article  CAS  Google Scholar 

  80. Esmaeilpour M, Javidi J, Dehghani F, Dodeji FN (2015) RSC Adv 33(5):26625

    Article  CAS  Google Scholar 

  81. Niknam K, Jamali A (2012) Chin J Catal 33:1840–49

    Article  CAS  Google Scholar 

  82. Sedaghat M, Booshehri MR, Nazarifar M, Farhadi F (2014) Appl Clay Sci 95:55–59

    Article  CAS  Google Scholar 

  83. Tabatabaeian K, Heidari H, Mamaghani M, Mahmoodi NO (2012) Appl Organomet Chem 26:56–61

    Article  CAS  Google Scholar 

  84. Tayebee R, Pejhan A, Ramshini H, Maleki B, Erfaninia N, Tabatabaie Z, Esmaeili E (2018) Appl Organomet Chem 32:e3924

    Article  CAS  Google Scholar 

  85. Khoobi M, Ma’mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A (2012) J Mol Catal A 359:74–80

    Article  CAS  Google Scholar 

  86. Hojati SF, Amiri A, MoeiniEghbali N, Mohamadi S (2018) Appl Organomet Chem 32(4):e4235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Yasouj University and the Iran National Science Foundation (INSF) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawood Elhamifar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi, M., Elhamifar, D. Phenylene and Isatin Based Bifunctional Mesoporous Organosilica Supported Schiff-Base/Manganese Complex: An Efficient and Recoverable Nanocatalyst. Catal Lett 149, 619–628 (2019). https://doi.org/10.1007/s10562-019-02653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02653-6

Keywords

Navigation