Skip to main content

Advertisement

Log in

Aerobic Oxidative Dehydrogenation of Ethyl Lactate Over Reduced MoVNbOx Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present study investigated the effect of low-valent transition metal ions and oxygen vacancies on the catalytic selective oxidation properties over reduced MoVNbOx catalysts. The MoVNbOx-catalyzed synthesis of ethyl pyruvate (EP) from ethyl lactate (EL) using molecular oxygen (O2) as the hydrogen acceptor under mild aerobic and normal pressure conditions is described. It was found that the nitrogen (N2) calcined catalysts with low-valent metal ions (V4+ and Mo4+) increased the oxidative dehydrogenation (ODH) reaction rate and the EL conversion reached 90.6% (~ 21.1 mmol [EP] mmol [V4+]−1 h−1). The ODH catalytic activity of the N2–MoVNbOx catalyst was four times higher than that of the pristine MoVNbOx catalyst. Low-valent V4+ ions introduced plenty of oxygen vacancies to the surface structure and increased the oxygen mobility, which facilitated the ODH reaction. Together, the results of the temperature programmed reduction of hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and ODH reaction experiments revealed that the presence of low-valent V4+/Mo4+ ions not only lowers the reduction temperature of oxide catalysts, but also facilitates the capture of O2 on the site of oxygen vacancies. The presence of active sites of low-valent V4+ ions and oxygen vacancies was proposed as the reaction mechanism responsible for the high activity. These results have implications for our understanding of the effects of oxidation processes on reduced multi-component oxides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J (2012) Science 337:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tanaka KI, Shimoda M, Kawahara M (2018) Biochem Biophys Res Commun 495:1335

    Article  CAS  PubMed  Google Scholar 

  3. Fink MP (2007) J Intern Med 261:349

    Article  CAS  PubMed  Google Scholar 

  4. Pathak M, Mishra R, Agarwala PK, Ojha H, Singh B, Singh A, Kukreti S (2016) Thermochim Acta 633:140

    Article  CAS  Google Scholar 

  5. Worku N, Stich A, Daugschies A, Wenzel I, Kurz R, Thieme R, Kurz S, Birkenmeier G (2015) PLoS ONE 10:e0137353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Güreş N, Karaman M, Tavusbay C, Kolatan E, Çelik A, Pekçetin Ç, Çavdar Z, Küme T, Guneli E, Yılmaz O (2014) Biomed Res 25:203

    Google Scholar 

  7. Wagner F, Asfar P, Georgieff M, Radermacher P, Wagner K (2012) Crit Care 16:112

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang X, Liu Y, Li X, Ren J, Zhou L, Lu T, Su Y (2018) ACS Sustain Chem Eng 6:8256

    Article  CAS  Google Scholar 

  9. Yang X, Bian J, Huang J, Xin W, Lu T, Chen C, Su Y, Zhou L, Wang F, Xu J (2017) Green Chem 19:692

    Article  CAS  Google Scholar 

  10. Zhou L, Wu L, Li H, Yang X, Su Y, Lu T, Xu J (2014) J Mol Catal A 388–389:74

    Article  CAS  Google Scholar 

  11. Zhao X, Zhang C, Xu C, Li H, Huang H, Song L, Li X (2016) Chem Eng J 296:217

    Article  CAS  Google Scholar 

  12. Zhang W, Ensing B, Rothenberg G Shiju NR (2018) Green Chem 20:1866

    Article  CAS  Google Scholar 

  13. Ramos-Fernandez EV, Geels NJ, Shiju NR, Rothenberg G (2014) Green Chem 16:3358

    Article  CAS  Google Scholar 

  14. Liu K, Huang X, Pidko EA, Hensen EJ (2017) Green Chem 19:3014

    Article  CAS  Google Scholar 

  15. Zhang C, Wang T, Ding Y (2017) Appl Catal A 533:59

    Article  CAS  Google Scholar 

  16. Yasukawa T, Ninomiya W, Ooyachi K, Aoki N, Mae K (2011) Ind Eng Chem Res 50:3858

    Article  CAS  Google Scholar 

  17. Ai M (2002) Appl Catal A 234:235

    Article  CAS  Google Scholar 

  18. Ai M, Ohdan K (1997) Appl Catal A 150:13

    Article  CAS  Google Scholar 

  19. Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:794

    Article  CAS  Google Scholar 

  20. Mao S, Li B, Su D (2014) J Mater Chem A 2:5287

    Article  CAS  Google Scholar 

  21. Gunay A, Theopold KH (2010) Chem Rev 110:1060

    Article  CAS  PubMed  Google Scholar 

  22. Su B, Cao ZC, Shi ZJ (2015) Acc Chem Res 48:886

    Article  CAS  PubMed  Google Scholar 

  23. Baldovino-Medrano VG, Alcázar C, Colomer MT, Moreno R, Gaigneaux EM (2013) Appl Catal A 468:190

    Article  CAS  Google Scholar 

  24. Bagheri S, Julkapli NM (2017) Int J Hydrog Energy 42:2116

    Article  CAS  Google Scholar 

  25. Zhang W, Innocenti G, Oulego P, Gitis V, Wu H, Ensing B, Cavani F, Rothenberg G, Shiju NR (2018) ACS Catal 8:2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Botella P, López Nieto JM, Dejoz A, Vázquez MI, Martínez-Arias A (2003) Catal Today 78:507

    Article  CAS  Google Scholar 

  27. Setnička M, Čičmanec P, Bulánek R, Zukal A, Pastva J (2013) Catal Lett 144:50

    Article  CAS  Google Scholar 

  28. Wang N-l, Qiu J-e, Wu J, You K-y, Luo H-a (2015) Catal Lett 145:1792

    Article  CAS  Google Scholar 

  29. Ishchenko EV, Gulyaev RV, Kardash TY, Ishchenko AV, Gerasimov EY, Sobolev VI, Bondareva VM (2017) Appl Catal A 534:58

    Article  CAS  Google Scholar 

  30. Che-Galicia G, Ruiz-Martínez RS, López-Isunza F, Castillo-Araiza CO (2015) Chem Eng J 280:628

    Article  CAS  Google Scholar 

  31. Ishchenko EV, Andrushkevich TV, Popova GY, Kardash TY, Ishchenko AV, Dovlitova LS, Chesalov YA (2014) Appl Catal A 476:91

    Article  CAS  Google Scholar 

  32. Li X, Iglesia E (2007) Angew Chem Int Ed Engl 46:8649

    Article  CAS  PubMed  Google Scholar 

  33. Nayak SC, Shee D, Deo G (2010) Catal Lett 136:271

    Article  CAS  Google Scholar 

  34. López-Medina R, Fierro JLG, Guerrero-Pérez MO, Bañares MA (2011) Appl Catal A 406:34

    Article  CAS  Google Scholar 

  35. Cheng M-J, Goddard WA (2015) J Am Chem Soc 137:13224

    Article  CAS  PubMed  Google Scholar 

  36. Ishikawa S, Ueda W (2016) Catal Sci Technol 6:617

    Article  CAS  Google Scholar 

  37. Che-Galicia G, Quintana-Solórzano R, Ruiz-Martínez RS, Valente JS, Castillo-Araiza CO (2014) Chem Eng J 252:75

    Article  CAS  Google Scholar 

  38. Ishchenko EV, Kardash TY, Gulyaev RV, Ishchenko AV, Sobolev VI, Bondareva VM (2016) Appl Catal A 514:1

    Article  CAS  Google Scholar 

  39. Li X, Iglesia E (2007) Angew Chem Int Ed 46:8649

    Article  CAS  Google Scholar 

  40. Li X, Iglesia E (2008) J Phys Chem C 112:15001

    Article  CAS  Google Scholar 

  41. Doornkamp C, Ponec V (2000) J Mol Catal A 162:19

    Article  CAS  Google Scholar 

  42. Miao S, Song L, Li H, Li X, Xing L, Li M (2014) Chin J Inorg Chem 30:1325

    CAS  Google Scholar 

  43. Zhang F, Zhang X, Jiang G, Li N, Hao Z, Qu S (2018) Chem Eng J 348:831

    Article  CAS  Google Scholar 

  44. Yang W, Zhu Y, You F, Yan L, Ma Y, Lu C, Gao P, Hao Q, Li W (2018) Appl Catal B 233:184

    Article  CAS  Google Scholar 

  45. Lu Y, Huang Y, Zhang Y, Cao J-j, Li H, Bian C, Lee SC (2018) Appl Catal B 231:357

    Article  CAS  Google Scholar 

  46. Li X, Iglesia E (2008) Appl Catal A 334:339

    Article  CAS  Google Scholar 

  47. Thorsteinson EM, Wilson TP, Young FG, Kasai PH (1978) J Catal 52:116

    Article  CAS  Google Scholar 

  48. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  49. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  50. Ekström T, Nygren M (1972) Acta Chem Scand 26:1827

    Article  Google Scholar 

  51. Zhu H, Laveille P, Rosenfeld DC, Hedhili MN, Basset J-M (2015) Catal Sci Technol 5:4164

    Article  CAS  Google Scholar 

  52. Kardash TY, Plyasova LM, Bondareva VM, Andrushkevich TV, Dovlitova LS, Ischenko AI, Nizovskii AI, Kalinkin AV (2010) Appl Catal A 375:26

    Article  CAS  Google Scholar 

  53. Wan C, Cheng D-g, Chen F, Zhan X (2015) RSC Adv 5:42609

    Article  CAS  Google Scholar 

  54. Harlin ME, Niemi VM, Krause AOI (2000) J Catal 195:67

    Article  CAS  Google Scholar 

  55. Sharma P, Dwivedi R, Dixit R, Batra M, Prasad R (2015) RSC Adv 5:39635

    Article  CAS  Google Scholar 

  56. Avdeev VI, Bedilo AF (2015) Res Chem Intermed 42:5237

    Article  CAS  Google Scholar 

  57. Maeda Y, Kakiuchi N, Matsumura S, Nishimura T, Kawamura T, Uemura S (2002) J Org Chem 67:6718

    Article  CAS  PubMed  Google Scholar 

  58. Kaichev VV, Popova GY, Chesalov YA, Saraev AA, Andrushkevich TV, Bukhtiyarov VI (2016) Kinet Catal 57:82

    Article  CAS  Google Scholar 

  59. Dong F, Xiong T, Sun Y, Huang H, Wu Z (2015) J Mater Chem A 3:18466

    Article  CAS  Google Scholar 

  60. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746

    Article  CAS  PubMed  Google Scholar 

  61. Lu T, Zou J, Zhan Y, Yang X, Wen Y, Wang X, Zhou L, Xu J (2018) ACS Catal 8:1287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 21676285 and 21306214), Qingdao Applied Basic Research Project - Indigenous Innovation Program (Grant No. 15-9-1-76-jch), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2017RCJJ015), Key Laboratory Opening Fund from Ministry-province Jointly-constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi Zhuang Autonomous Region, and National Undergraduate Innovation and Entrepreneurship Training Program (Grant No. 201710424083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Song, Xuebing Li or Zhongwei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3303 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, R., Song, L. et al. Aerobic Oxidative Dehydrogenation of Ethyl Lactate Over Reduced MoVNbOx Catalysts. Catal Lett 149, 840–850 (2019). https://doi.org/10.1007/s10562-018-2616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2616-9

Keywords

Navigation