Skip to main content
Log in

H-D Exchange of Simple Aromatics as a Measure of Brønsted-Acid Site Strengths in Solids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The relative Brønsted-acid strengths of H-[Al]ZSM-5, H-[Fe]ZSM-5, H-[B]ZSM-5, silicalite, P-SPP, tungstated zirconia, ZrO2, and γ-Al2O3 were studied using H-D exchange with toluene and chlorobenzene. Temperature programmed desorption (TPD) of toluene-h8 and chlorobenzene-h5 from the deuterated forms of H-[Al]ZSM-5, H-[Fe]ZSM-5, and P-SPP demonstrated that the temperature at which H-D exchange rates become significant change with the proton affinity of the aromatic molecule and the strength of the Brønsted sites. The steady-state, gas-phase reaction between D2O and the aromatic molecules were consistent with the TPD results and allowed the Brønsted-acid site strengths to be ordered as follows: H-[Al]ZSM-5 > H-[Fe]ZSM-5 > tungstated zirconia > P-SPP > H-[B]ZSM-5. H-D exchange was also observed at high temperatures with ZrO2 and γ-Al2O3 but it appears that the reaction mechanism with these Lewis acids is different because reaction with toluene and chlorobenzene occur at nearly the same temperature. It is suggested that the H-D exchange reaction with simple aromatic molecules is a useful way to probe Brønsted acidity in solids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Juskelis MV, Slanga JP, Roberie TG, Peters AW (1992) A comparison of CaO, Beta, and a dealuminated Y by ammonia TPD and by temperature programmed 2-propylamine cracking. J Catal 138:391–394

    Article  CAS  Google Scholar 

  2. Gorte RJ (1999) What do we know about the acidity of solid acids? Catal Lett 62:1–13

    Article  CAS  Google Scholar 

  3. Farneth WE, Gorte RJ (1995) Methods for characterizing zeolite acidity. Chem Rev 95:615–635

    Article  CAS  Google Scholar 

  4. Kresnawahjuesa O, Kuhl GH, Gorte RJ, Quierini CA (2002) An examination of Brønsted acid sites in H-[Fe]ZSM-5 for olefin oligomerization and adsorption. J Catal 210:106–115. https://doi.org/10.1006/jcat.2002.3657

    Article  CAS  Google Scholar 

  5. Parry E (1963) An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J Catal 2:371–379

    Article  CAS  Google Scholar 

  6. Kresnawahjuesa O, Gorte RJ, De Oliveira D, Lau L (2002) A simple, inexpensive, and reliable method for measuring Brønsted-acid site densities in solid acids. Catal Lett 82:155–160

    Article  CAS  Google Scholar 

  7. Zhang X, Liu D, Xu D, Asahina S, Cychosz KA, Agrawal KV, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M (2012) Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336:1684–1687

    Article  CAS  Google Scholar 

  8. Cho HJ, Ren L, Vattipalli V, Yeh Y, Gould N, Xu B et al (2017) Renewable p-xylene from 2,5-dimethylfuran and ethylene using phosphorus-containing zeolite catalysts. ChemCatChem 9:398–402

    Article  CAS  Google Scholar 

  9. Deshlahra P, Iglesia E (2016) Toward more complete descriptors of reactivity in catalysis by solid acids. ACS Catal 6:5386–5392

    Article  CAS  Google Scholar 

  10. Roy S, Mpourmpakis G, Hong D-Y, Vlachos DG, Bhan A, Gorte RJ (2012) Mechanistic study of alcohol dehydration on γ-Al2O3. ACS Catal 2:1846–1853

    Article  CAS  Google Scholar 

  11. Boekfa B, Choomwattana S, Khongpracha P, Limtrakul J (2009) Effects of the zeolite framework on the adsorptions and hydrogen-exchange reactions of unsaturated aliphatic, aromatic, and heterocyclic compounds in ZSM-5 zeolite: a combination of perturbation theory (MP2) and a newly developed density functional theory (M06-2X) in ONIOM scheme. Langmuir 25:12990–12999

    Article  CAS  Google Scholar 

  12. Chen K, Gumidyala A, Abdolrhamani M, Villines C, Crossley S, White JL (2017) Trace water amounts can increase benzene H/D exchange rates in an acidic zeolite. J Catal 351:130–135

    Article  CAS  Google Scholar 

  13. Yeh Y-H, Gorte RJ (2016) Study of Zn and Ga exchange in H-[Fe]ZSM-5 and H-[B]ZSM-5 Zeolites. Ind Eng Chem Res 55:12795–12805

    Article  CAS  Google Scholar 

  14. Zhang Y, Yu J, Yeh Y-H, Gorte RJ, Rangarajan S, Mavrikakis M (2015) An adsorption study of CH4 on ZSM-5, MOR, and ZSM-12 zeolites. J Phys Chem C 119:28970–28978

    Article  CAS  Google Scholar 

  15. Abdelrahman OA, Park DS, Vinter KP, Spanjers CS, Ren L, Cho HJ, Zhang KC, Fan W, Tsapatsis M, Dauenhauer PJ (2017) Renewable isoprene by sequential hydrogenation of itaconic acid and dehydra-decyclization of 3-methyl-tetrahydrofuran. ACS Catal 7:1428–1431

    Article  CAS  Google Scholar 

  16. Abdelrahman OA, Park DS, Vinter KP, Spanjers CS, Ren L, Cho HJ, Vlachos DG, Fan W, Tsapatsis M, Dauenhauer PJ (2017) Biomass-derived butadiene by dehydra-decyclization of tetrahydrofuran. ACS Sustain Chem Eng 5:3732–3736. https://doi.org/10.1021/acssuschemeng.7b00745

    Article  CAS  Google Scholar 

  17. Wang C, Mao X, Lee J, Onn T, Yeh Y-H, Murray C, Gorte R (2018) A characterization study of reactive sites in ALD-synthesized WOx/ZrO2 catalysts. Catalysts 8:292. https://doi.org/10.3390/catal8070292

    Article  Google Scholar 

  18. Yeh Y-H, Gorte RJ, Rangarajan S, Mavrikakis M (2016) Adsorption of small alkanes on ZSM-5 zeolites: influence of Brønsted sites. J Phys Chem C 120:12132–12138

    Article  CAS  Google Scholar 

  19. Luo J, Yu J, Gorte RJ, Mahmoud E, Vlachos DG, Smith MA (2014) The effect of oxide acidity on HMF etherification. Catal Sci Technol 4:3074–3081. https://doi.org/10.1039/C4CY00563E

    Article  CAS  Google Scholar 

  20. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al (2013) Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford

    Google Scholar 

  21. Migues AN, Muskat A, Auerbach SM, Sherman W, Vaitheeswaran S (2015) On the rational design of zeolite clusters. ACS Catal 5:2859–2865

    Article  CAS  Google Scholar 

  22. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  24. Fukui K (1997) The path of chemical reactions—the IRC approach. In: Frontier orbitals and reaction paths: selected papers of Kenichi Fukui, pp 471–476

    Chapter  Google Scholar 

  25. Farneth WE, Roe DC, Kofke TG, Tabak CJ, Gorte RJ (1988) Proton transfer to toluene in H-ZSM-5: TPD, IR, and NMR studies. Langmuir 4:152–158

    Article  CAS  Google Scholar 

  26. Parrillo DJ, Lee C, Gorte RJ, White D, Farneth WE (1995) Comparison of the acidic properties of H-[Al]ZSM-5, H-[Fe]ZSM-5, and H-[Ga]ZSM-5 using microcalorimetry, hexane cracking, and propene oligomerization. J Phys Chem 99:8745–8749

    Article  CAS  Google Scholar 

  27. Zhou W, Soultanidis N, Xu H, Wong MS, Neurock M, Kiely CJ et al (2017) Nature of catalytically active sites in the supported WO3/ZrO2 solid acid system: a current perspective. ACS Catal 7:2181–2198. https://doi.org/10.1021/acscatal.6b03697

    Article  CAS  Google Scholar 

  28. Ryder JA, Chakraborty AK, Bell AT (2000) Density functional theory study of proton mobility in zeolites: proton migration and hydrogen exchange in ZSM-5. J Phys Chem B 104:6998–7011

    Article  CAS  Google Scholar 

  29. Haag W (1994) Catalysis by zeolites–science and technology. Stud. Surf. Sci. Catal. 84:1375–1394

    Article  CAS  Google Scholar 

  30. Olson D, Haag W, Lago R (1980) Chemical and physical properties of the ZSM-5 substitutional series. J Catal 61:390–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Gorte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, S., Mao, X. et al. H-D Exchange of Simple Aromatics as a Measure of Brønsted-Acid Site Strengths in Solids. Catal Lett 148, 3548–3556 (2018). https://doi.org/10.1007/s10562-018-2563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2563-5

Keywords

Navigation