Skip to main content
Log in

Enhancing the CO Preferential Oxidation (CO-PROX) of CuO–CeO2/Reduced Graphene Oxide (rGO) by Conductive rGO-Wrapping Based on the Interfacial Charge Transfer

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Reduced graphene oxide supported CuO–CeO2 nanospheres (CuO–CeO2/rGO) were prepared by a facile hydrothermal method. The chemically bonded CuO–CeO2/rGO composites effectively enhanced their activity in the CO preferential oxidation (CO-PROX), while moderate rGO content (7 mg) exhibited an improvement on the catalytic activity. The prepared composite with 14 wt% rGO showed the highest catalytic activity, exceeding that of pure CuO–CeO2 and mechanically mixed CuO–CeO2 and rGO, respectively. The enhancement in the CO-PROX activity was attributed to the synergetic effect between rGO and CuO–CeO2 nanospheres. Besides supported rGO layers as excellent electron transporters, CuO–CeO2 nanospheres in turn act as the skeleton to brace two-dimensional structure to prevent from further curling, crumpling and aggregation of rGO. In the presence of capping agents during synthesis, limited catalytic activities of CuO–CeO2/rGO was observed due to the restrained interfacial charge transfer between CuO–CeO2 and rGO layers. This work, focusing on effective CO-PROX through a chemically bonded interface between CuO–CeO2 and rGO, can provide a new insight for design of new heterogeneous catalysts.

Graphical Abstract

Chemical bonded CuO–CeO2/rGO nanocomposites synthesized by a facile hydrothermal approach have shown high CO-PROX activity. Excellent charge transport between rGO layers and CuO–CeO2 nanospheres via their interfaces leads to enhanced catalytic activity for CO-PROX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Palo DR, Dagle RA, Holladay JD (2007) Methanol steam reforming for hydrogen production. Chem Rev 107:3992–4021

    Article  CAS  PubMed  Google Scholar 

  2. Yen H, Seo Y, Kaliaguine S et al (2012) Tailored mesostructured copper/ceria catalysts with enhanced performance for preferential oxidation of CO at low temperature. Angew Chem Int Ed 51:12032–12035

    Article  CAS  Google Scholar 

  3. Luo MF, Ma JM, Lu JQ et al (2007) High-surface area CuO–CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. J Catal 246:52–59

    Article  CAS  Google Scholar 

  4. Zheng XC, Zhang XL, Wang XY et al (2005) Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation. Appl Catal A 295:142–149

    Article  CAS  Google Scholar 

  5. Zhao ZK, Lin XL, Jin RH et al (2012) MOx (M = Mn, Fe, Ni or Cr) improved supported Co3O4 catalysts on ceria-zirconia nanoparticulate for CO preferential oxidation in H2-rich gases. Appl Catal B 115:53–62

    Article  CAS  Google Scholar 

  6. Yoshida Y, Mitani Y, Itoi T et al (2012) Preferential oxidation of carbon monoxide in hydrogen using zinc oxide photocatalysts promoted and tuned by adsorbed copper ions. J Catal 287:190–202

    Article  CAS  Google Scholar 

  7. Zhou GL, Xie HM, Gui BG et al (2012) Influence of NiO on the performance of CoO-based catalysts for the selective oxidation of CO in H2-rich gas. Catal Commun 19:42–45

    Article  CAS  Google Scholar 

  8. Ko EY, Park ED, Lee HC et al (2007) Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream. Angew Chem Int Ed 46:734–737

    Article  CAS  Google Scholar 

  9. Kydd R, Teoh WY, Wong K et al (2009) Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO. Adv Funct Mater 19:369–377

    Article  CAS  Google Scholar 

  10. Wang F, Büchel R, Savitsky A et al (2016) In situ EPR study of the redox properties of CuO–CeO2 catalysts for preferential CO oxidation (PROX). ACS Catal 6:3520–3530

    Article  CAS  Google Scholar 

  11. Wang WW, Du PP, Zou SH et al (2015) Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal 5:2088–2099

    Article  CAS  Google Scholar 

  12. Wang WW, Yu WZ, Du PP et al (2017) Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal-support interaction. ACS Catal 7:1313–1329

    Article  CAS  Google Scholar 

  13. Wu ZW, Zhu HQ, Qin ZF et al (2013) CO preferential oxidation in H2-rich stream over a CuO/CeO2 catalyst with high H2O and CO2 tolerance. Fuel 104:41–45

    Article  CAS  Google Scholar 

  14. Hornés A, Hungría AB, Bera P et al (2010) Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream. J Am Chem Soc 132: 34–35.

    Article  CAS  PubMed  Google Scholar 

  15. Gao YX, Xie KM, Wang WD et al (2015) Structural features and catalytic performance in CO preferential oxidation of CuO–CeO2 supported on multi-walled carbon nanotubes. Catal Sci Technol 5:1568–1579

    Article  CAS  Google Scholar 

  16. Atalik B, Uner D (2006) Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3. J Catal 241:268–275

    Article  CAS  Google Scholar 

  17. Fu Q, Li WX, Yao Y et al (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328:1141–1144

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Fang SSS, Teo J et al. (2012) Activation and deactivation of Au-Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catal 2:360–369

    Article  CAS  Google Scholar 

  19. Biffinger JC, Uppaluri S, Sun H et al (2011) Ligand fluorination to optimize preferential oxidation of carbon monoxide by water-soluble rhodium porphyrins. ACS Catal 1:764–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guan H, Jian L, Lin L et al (2016) Highly active subnano Rh/Fe(OH)x catalyst for preferential oxidation of CO in H2-rich stream. Appl Catal B 184:299–308

    Article  CAS  Google Scholar 

  21. Zhang H, Jin MS, Liu HY et al (2011) Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 5:8212–8222

    Article  CAS  PubMed  Google Scholar 

  22. Chen LM, Ma D, Bao XH (2007) Hydrogen treatment-induced surface reconstruction: formation of superoxide species on activated carbon over Ag/activated carbon catalysts for selective oxidation of CO in H2-rich gases. J. Phys. Chem. C 111: 2229–2234

    Article  CAS  Google Scholar 

  23. Morfin F, Nassreddine S, Rousset JL et al (2012) Nanoalloying effect in the preferential oxidation of CO over Ir-Pd catalysts. ACS Catal 2:2161–2168

    Article  CAS  Google Scholar 

  24. Lin J, Qiao B, Liu J et al (2012) Design of a highly active Ir/Fe(OH)x catalyst: versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew Chem Int Ed 51:2920–2924

    Article  CAS  Google Scholar 

  25. Alayoglu S, Nilekar AU, Mavrikakis M et al (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  CAS  PubMed  Google Scholar 

  26. Qin JW, Lu JF, Cao MH et al (2010) Synthesis of porous CuO–CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2:2739–2743

    Article  CAS  PubMed  Google Scholar 

  27. Gamarra D, Belver C, Fernández-García M, et al. (2007) Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species. J Am Chem Soc 129:12064–12065

    Article  CAS  PubMed  Google Scholar 

  28. Guzman J, Carrettin S, Corma A (2005) Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J Am Chem Soc 127:3286–3287

    Article  CAS  PubMed  Google Scholar 

  29. Bianco A, Cheng HM, Enoki T et al (2013) All in the graphene family-A recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    Article  CAS  Google Scholar 

  30. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  PubMed  Google Scholar 

  31. Zhou XJ, Qiao JL, Yang L et al (2014) A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions. Adv Energy Mater 4:1289–1295

    Google Scholar 

  32. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75

    Article  CAS  Google Scholar 

  33. Huang HJ, Yang SB, Vajtai R et al (2014) Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv Mater 26:5160–5165

    Article  CAS  PubMed  Google Scholar 

  34. Li YF, Zhou Z, Yu GT et al (2010) CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C 114:6250–6254

    Article  CAS  Google Scholar 

  35. Wang X, Li XY, Liu DP et al (2012) Green synthesis of Pt/CeO2/graphene hybrid nanomaterials with remarkably enhanced electrocatalytic properties. Chem Commun 48:2885–2887

    Article  CAS  Google Scholar 

  36. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088

    Article  CAS  PubMed  Google Scholar 

  37. Shang NG, Papakonstantinou P, McMullan M et al (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514

    Article  CAS  Google Scholar 

  38. Song EH, Wen Z, Jiang Q (2011) CO catalytic oxidation on copper-embedded graphene. J Phys Chem C 115:3678–3683

    Article  CAS  Google Scholar 

  39. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  40. Wu JB, Lin ML, Cong X et al (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47:1822–1873

    Article  CAS  PubMed  Google Scholar 

  41. Zheng XM, Chen W, Wang G et al (2015) The Raman redshift of graphene impacted by gold nanoparticles. AIP Adv 5:1530–1534

    Google Scholar 

  42. Tivanov MS, Kolesov EA, Praneuski AG et al (2016) Significant G peak temperature shift in Raman spectra of graphene on copper. J Mater Sci 27:8879–8883

    CAS  Google Scholar 

  43. Scherrer P (1918) In: Göttinger Nachrichten Gesell, vol 2, pp. 98–100

  44. Liu RJ, Li SW, Yu XL et al (2012) A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. J Mater Chem 22:3319–3322

    Article  CAS  Google Scholar 

  45. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  46. Feng XF, Jiang KL, Fan SS et al (2015) Grain-boundary-dependent CO2 electroreduction activity. J. Am Chem Soc 137:4606–4609

    Article  CAS  PubMed  Google Scholar 

  47. Dongil AB, Bachiller Baeza B, Castillejos E et al (2016) The promoter effect of potassium in CuO/CeO2 systems supported on carbon nanotubes and graphene for the CO-PROX reaction. Catal Sci Technol 6:6118–6127

    Article  CAS  Google Scholar 

  48. Ji YJ, Jin ZY, Li J et al (2017) Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: facile hydrothermal synthesis and applications. Nano Res 10:381–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601014, 21471016 and 21271023) and the 111 Project (B07012). The authors would like to thank the Analysis & Testing Center of Beijing Institute of Technology for performing FESEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinwen Qin or Changwen Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5109 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Qin, J., Wei, D. et al. Enhancing the CO Preferential Oxidation (CO-PROX) of CuO–CeO2/Reduced Graphene Oxide (rGO) by Conductive rGO-Wrapping Based on the Interfacial Charge Transfer. Catal Lett 148, 3454–3466 (2018). https://doi.org/10.1007/s10562-018-2520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2520-3

Keywords

Navigation