Skip to main content
Log in

Bipyridine-Proline Grafted Silicas with Different Mesopore Structures: Their Catalytic Performance in Asymmetric Aldol Reaction and Structure Effect

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of immobilized bipyridine-proline based on mesoporous silica with different structures were synthesized via grafting followed by coordination method. All catalysts were used in asymmetric aldol reaction of cyclohexanone with 4-nitrobenzaldehyde, and their catalytic performance including activities and stabilities have been investigated. The results indicated that the pore structure, morphology, and even the particle dispersity all showed the effects on the catalytic performance of immobilized catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Bayston DJ, Travers CB, Polywka MEC (1998) Chem Inform 29:2015–2018

    Google Scholar 

  2. Sandee AJ, Petra DG, Reek JN, Kamer PC (2001) Chem Eur J 7:1202–1208

    Article  CAS  PubMed  Google Scholar 

  3. Jiang D, Gao J, Li J, Yang Q (2008) Microporous Mesoporous Mater 113:385–392

    Article  CAS  Google Scholar 

  4. Davis ME (2002) Chem Inform 33:813–821

    Google Scholar 

  5. Tang Z, Jiang F, Cui X, Gong LZ (2004) Proc Natl Acad Sci USA 101:5755–5760

    Article  CAS  PubMed  Google Scholar 

  6. Lou LL, Yu K, Ding F, Peng X (2007) J Catal 249:102–110

    Article  CAS  Google Scholar 

  7. Wang S (2009) Microporous Mesoporous Mater 117:1–9

    Article  CAS  Google Scholar 

  8. López T, Ortiz E, Meza D, Basaldella E (2011) Mater Chem Phys 126:922–929

    Article  CAS  Google Scholar 

  9. Xue X, Li F (2008) Microporous Mesoporous Mater 116:116–122

    Article  CAS  Google Scholar 

  10. Dominguez F, Sabater MJ (2004) J Catal 228:92–99

    Article  CAS  Google Scholar 

  11. Avelino C (2004) Catal Rev 46:369–417

    Article  CAS  Google Scholar 

  12. Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 37:4732–4762

    Article  CAS  Google Scholar 

  13. Cozzi F (2006) Adv Synth Catal 348:1367–1390

    Article  CAS  Google Scholar 

  14. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456–6482

    Article  CAS  Google Scholar 

  15. Hu Y, Wu P, Yin Y, Zhang H (2012) Appl Catal B Environ 111–112:208–217

    Article  CAS  Google Scholar 

  16. Mcmorn P, Hutchings GJ (2004) Chem Soc Rev 33:108–122

    Article  CAS  PubMed  Google Scholar 

  17. Song CE, Lee SG (2002) Chem Rev 102:3495–3524

    Article  CAS  PubMed  Google Scholar 

  18. Calderón F, Fernández R, Sánchez F (2005) Adv Synth Catal 347:1395–1403

    Article  CAS  Google Scholar 

  19. Gao J, Liu J, Tang J, Jiang D (2010) Chem Eur J 16:7852–7858

    Article  CAS  PubMed  Google Scholar 

  20. Lou LL, Yu Y, Yu K, Jiang S (2009) Sci China 52:1417–1422

    Article  CAS  Google Scholar 

  21. Sun J, Shan Z, Thomas Maschmeyer A, Coppens MO (2003) Langmuir 19:8395–8402

    Article  CAS  Google Scholar 

  22. Tang Z, Sun J, Zhao H, Bai S (2017) Microporous Mesoporous Mater 260:245–252

    Article  CAS  Google Scholar 

  23. Wu H, Zhang S, Zhang J, Liu G (2011) Adv Funct Mater 21:1850–1862

    Article  CAS  Google Scholar 

  24. Sun J, Shan Z, Maschmeyer T, Moulijn JA (2001) Chem Commun 24:2670–2671

    Article  CAS  Google Scholar 

  25. Zhao D, Feng J, Huo Q, Melosh N (1998) Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

  26. Pitchumani R, Li W, Coppens MO (2005) Catal Today 105:618–622

    Article  CAS  Google Scholar 

  27. Rosen R (2004) J Phys Chem B 108:11480–11489

    Article  CAS  Google Scholar 

  28. Zhang W, Lu X, Xiu J, Hua Z (2004) Adv Funct Mater 14:544–552

    Article  CAS  Google Scholar 

  29. Gao L, Sun J, Li Y, Zhang L (2011) J Nanosci Nanotechnol 11:6690–6697

    Article  CAS  PubMed  Google Scholar 

  30. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 35(29):2334–2375

    Article  CAS  Google Scholar 

  31. Chen J, Fang X, Duan X, Ye L (2013) Green Chem 16:294–302

    Article  Google Scholar 

  32. Zhao HW, Li HL (2012) Synlett 23:1990–1994

    Article  CAS  Google Scholar 

  33. Zhao HW, Yue YY (2012) Synlett 31:485–493

    Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (21576005, 21403011), and the Beijing Municipal Natural Science Foundation (2152005, 2172004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyang Bai or Jihong Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 673 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Bai, S., Sun, J. et al. Bipyridine-Proline Grafted Silicas with Different Mesopore Structures: Their Catalytic Performance in Asymmetric Aldol Reaction and Structure Effect. Catal Lett 148, 2408–2417 (2018). https://doi.org/10.1007/s10562-018-2421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2421-5

Keywords

Navigation