Skip to main content
Log in

Role of Surface Carboxylates in the Gas Phase Ozone-Assisted Catalytic Oxidation of Toluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ozone-assisted catalytic oxidation of toluene was conducted over MnOx/γ-Al2O3 to identify and differentiate the role of reaction byproducts. It was found that not only alumina acted as a reservoir for toluene, but also it interacted effectively with toluene to create surface carboxylate intermediates. Surface carboxylates were essential for an effective oxidation process, and they did not directly cause catalyst deactivation. The presence of Mn sites was necessary for further oxidation of the surface carboxylates. At 90 °C, a stable catalytic activity with 95% conversion was achieved. However, at 25 °C, byproducts such as acetic acid and formic acid accumulated on the surface of the catalyst and decreased the catalyst activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Guieysse B, Hort C, Platel V, Munoz R, Ondarts M, Revah S (2008) Biotechnol Adv 26:398–410

    Article  CAS  Google Scholar 

  2. Li M-S, Wu SC, Shih Y-H (2016) J Hazard Mater 315:35–41

    Article  CAS  Google Scholar 

  3. Huang Y, Ho SSH, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Molecules 21:56

    Article  Google Scholar 

  4. Rodrigues A, Tatibouet J-M, Fourre E (2016) Plasma Chem Plasma Process 36:901–915

    Article  CAS  Google Scholar 

  5. Mohamed EF, Awad G, Andriantsiferana C, El-Diwany AI (2016) Environ Technol 37:1197–1207

    Article  CAS  Google Scholar 

  6. Naydenov A, Mehandjiev D (1993) Appl Catal A Gen 97:17–22

    Article  CAS  Google Scholar 

  7. Rezaei E, Soltan J, Chen N, Lin J (2013) Chem Eng J 214:219–228

    Article  CAS  Google Scholar 

  8. Rezaei E, Soltan J (2012) Chem Eng J 198–199:482–490

    Article  Google Scholar 

  9. Reed C, Xi Y, Oyama ST (2005) J Catal 235:378–392

    Article  CAS  Google Scholar 

  10. Huang H, Ye X, Huang W, Chen J, Xu Y, Wu M, Shao Q, Peng Z, Ou G, Shi J, Feng X, Feng Q, Huang H, Hu P, Leung DYC (2015) Chem Eng J 264:24–31

    Article  CAS  Google Scholar 

  11. Jung S-C, Park Y-K, Jung HY, Kang U Il, Nah JW, Kim SC (2016) Res Chem Intermed 42:185–199

    Article  CAS  Google Scholar 

  12. Zhao D-Z, Shi C, Li X-S, Zhu A-M, Jang BW-L (2012) J Hazard Mater 239:362–369

    Article  Google Scholar 

  13. Einaga H, Futamura S (2004) React Kinet Catal Lett 81:121–128

    Article  CAS  Google Scholar 

  14. Jin D, Ren Z, Ma Z, Liu F, Yang H (2015) Rsc Adv 5:15103–15109

    Article  CAS  Google Scholar 

  15. Einaga H, Maeda N, Teraoka Y (2013) Appl Catal B 142:406–413

    Article  Google Scholar 

  16. Einaga H, Futamura S (2004) J Catal 227:304–312

    Article  CAS  Google Scholar 

  17. Einaga H, Futamura S (2005) Appl Catal B 60:49–55

    Article  CAS  Google Scholar 

  18. Einaga H, Ogata A (2009) J Hazard Mater 164:1236–1241

    Article  CAS  Google Scholar 

  19. Einaga H, Teraoka Y, Ogata A (2013) J Catal 305:227–237

    Article  CAS  Google Scholar 

  20. Wang HC, Liang HS, Chang MB (2011) J Hazard Mater 186:1781–1787

    Article  CAS  Google Scholar 

  21. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  22. Rezaei E, Soltan J, Chen N (2013) Appl Catal B Environ 136–137:239–247

    Article  Google Scholar 

  23. Coates J (2000) In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons Ltd., Chichester, pp 10815–10837

  24. Liping L, Jianguo Z, Lixian Y, Mingli F, Junliang W, Bichun H, Daiqi Y (2011) Chinese J Catal 32:904–916

    Article  Google Scholar 

  25. Andersson SLT (1986) J Catal 98:138–149

    Article  Google Scholar 

  26. Busca G, Cavani F, Trifirò F (1987) J Catal 106:471–482

    Article  CAS  Google Scholar 

  27. Irigoyen B, Juan A, Larrondo S, Amadeo N (2003) Surf Sci 523:252–266

    Article  CAS  Google Scholar 

  28. Menon U, Galvita VV, Marin GB (2011) J Catal 283:1–9

    Article  CAS  Google Scholar 

  29. Rezaei E, Soltan J (2014) Appl Catal B Environ 148–149:70–79

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the University of Saskatchewan and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support of this research. XANES experiments were performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, NSERC, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Soltan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 551 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghbolaghy, M., Soltan, J. & Chen, N. Role of Surface Carboxylates in the Gas Phase Ozone-Assisted Catalytic Oxidation of Toluene. Catal Lett 147, 2421–2433 (2017). https://doi.org/10.1007/s10562-017-2143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2143-0

Keywords

Navigation