Skip to main content
Log in

Activity of Selective Catalytic Reduction of NO over V2O5/TiO2 Catalysts Preferentially Exposed Anatase {001} and {101} Facets

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Three V2O5/TiO2 catalysts with V2O5 loading of 3 wt% were fabricated by wet impregnation, in which the TiO2 supports had different crystal types, including the octahedral TiO2 (preferentially exposed anatase {101} facets, labeled as TiO2-O), the sheet TiO2 (preferentially exposed anatase {001} facets, labeled as TiO2-S), and the commercial TiO2 (TiO2-P25), giving the three corresponding catalysts, respectively. The activities and the effects of H2O and SO2 over the V2O5/TiO2 catalysts for the selective catalytic reduction (SCR) of NO by NH3 were investigated. It was found that the crystal facets of TiO2 nanoparticles played an essential role in the catalytic activity. The V2O5/TiO2-S catalyst exhibited the better catalytic activity than the V2O5/TiO2-O and V2O5/TiO2-P25 catalysts for the NH3-SCR reaction. The N2 sorption isotherm measurement (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (H2-TPR), temperature-programmed desorption (NH3-TPD), X-ray photoelectron spectra (XPS) and in-situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) characterizations showed that the good dispersion and reducibility of vanadium species, and the high concentration of chemisorbed oxygen of the V2O5/TiO2-S catalyst could be responsible for the enhancement in the activity of NH3-SCR reaction over the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Skalska K, Miller JS, Ledakowicz S (2010) Sci Total Environ 408:3976

    Article  CAS  Google Scholar 

  2. Forzatti P, Lietti L (1996) Heterog Chem Rev 3:33

    Article  CAS  Google Scholar 

  3. Muzio LJ, Quartucy GC (1997) Prog Energ Combust 23:233

    Article  CAS  Google Scholar 

  4. Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1

    Article  CAS  Google Scholar 

  5. Alemany LJ, Berti F, Busca G, Ramis G, Robba D, Toledo GP (1996) Appl Catal B 248:299

    Article  Google Scholar 

  6. Went GT, Leu LJ, Bell AT (1992) J Catal 134:479

    Article  CAS  Google Scholar 

  7. Cargnello M, Gordon TR, Murray CB (2014) Chem Rev 114:9319

    Article  CAS  Google Scholar 

  8. Wang HQ, Cao S, Fang Z, Yu FX, Liu Y, Weng XL, Wu ZB (2015) Appl Surf Sci 330:245

    Article  CAS  Google Scholar 

  9. Deng SC, Meng TT, Xu BL, Gao F, Ding YH, Yu L, Fan YN (2016) ACS Catal 6:5807

    Article  CAS  Google Scholar 

  10. Shi QQ, Li Y, Zhou Y, Miao S, Ta N, Zhan E, Liu JY, Shen WJ (2015) J Mater Chem A 3:14409

    Article  CAS  Google Scholar 

  11. Gai LG, Mei QH, Qin XY, Li WP, Jiang HH, Duan XQ (2013) Mater Res Bull 48:4469

    Article  CAS  Google Scholar 

  12. Liu NG, Zhao YY, Wang XC, Pengn HR, Li GC (2013) Mater Lett 102–103:53

    Google Scholar 

  13. Chao JD, He H, Song LY, Fang YJ, Liang QM, Zhang GZ, Qiu WG, Zhang R (2015) Chem J Chin Univers 36:523

    CAS  Google Scholar 

  14. Song LY, Zhan ZC, Liu XJ, He H, Qiu WG, Zi XH (2014) Chin J Catal 35:1030

    Article  CAS  Google Scholar 

  15. Chmielarz L, Dziembaj R, Grzybek T, Klinik J, Lojewski T, Olszewska D, Wegrzyn A (2000) Catal Lett 70:51

    Article  CAS  Google Scholar 

  16. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Nature 453:638

    Article  CAS  Google Scholar 

  17. Yang HG, Zeng HC (2004) J Phys Chem B 108:3492

    Article  CAS  Google Scholar 

  18. Cavani F, Cortelli C, Frattini A, Panzacchi B, Ravaglia V, Trifirò F, Fumagalli C, Leanza R, Mazzoni G (2006) Catal Today 118:298

    Article  CAS  Google Scholar 

  19. Tang FS, Zhuang K, Yang F, Yang LL, Xu BL, Qiu JH, Fan Y (2012) Chin J Catal 33:933

    Article  CAS  Google Scholar 

  20. Cha W, Chin S, Park E, Yun ST, Jurng J (2013) Appl Catal B 140–141:708

    Article  Google Scholar 

  21. Choudhary VR, Uphade BS, Pataskar SG (2002) Appl Catal A 227:29

    Article  CAS  Google Scholar 

  22. Sorrentino A, Rega S, Sannino D, Magliano A, Ciambelli P, Santacesaria E (2001) Appl Catal A 209:45

    Article  CAS  Google Scholar 

  23. Monaci R, Rombi E, Solinas V, Sorrentino A, Santacesaria E, Colon G (2001) Appl Catal A 214:203

    Article  CAS  Google Scholar 

  24. Gong XQ, Selloni A (2005) J Phys Chem B 109:19560

    Article  CAS  Google Scholar 

  25. Georgiadou I, Papadopoulou Ch, Matralis HK, Voyiatzis GA, Lycourghiotis A, Kordulis Ch (1998) J Phys Chem B 102:8459

    Article  CAS  Google Scholar 

  26. Chen L, Li JH, Ge MF (2009) J Phys Chem C 113:21177

    Article  CAS  Google Scholar 

  27. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) J Am Chem Soc 134:3659

    Article  CAS  Google Scholar 

  28. Wu Z, Jin R, Liu Y, Wang H (2008) Catal Commun 9:2217

    Article  CAS  Google Scholar 

  29. Kang M, Park ED, Kim JM, Yie JE (2007) Appl Catal A 327:261

    Article  CAS  Google Scholar 

  30. Boningari T, Koirala R, Smirniotis PG (2013) Appl Catal B 140–141:289

    Article  Google Scholar 

  31. Topsøe NY, Topsøe H, Dumesic JA (1995) J Catal 151:226

    Article  Google Scholar 

  32. Calatayud M, Minot C (2004) J Phys Chem B 108:15679

    Article  CAS  Google Scholar 

  33. Anstrom M, Topsøe NY, Dumesic JA (2003) J Catal 213:115

    Article  CAS  Google Scholar 

  34. Kristensen SB, Kunov-Kruse AJ, Riisager A, Rasmussen SB, Fehrmann R (2011) J Catal 284:60

    Article  CAS  Google Scholar 

  35. Hadjiivanov K (2000) Catal Rev 42:71

    Article  CAS  Google Scholar 

  36. Pena D, Uphade B, Reddy E, Smirniotis P (2004) J Phys Chem B 108:9927

    Article  CAS  Google Scholar 

  37. Zawadzki J, Wisniewski M (2003) Carbon 41:2257

    Article  CAS  Google Scholar 

  38. Gutierrez-Alejandre A, Ramirez J, Busca G, Vibrational A (1998) Langmuir 14:630

    Article  CAS  Google Scholar 

  39. Dallacqua L, Nova I, Lietti L, Ramis G, Busca G, Giamello E (2000) Phys Chem Chem Phys 2:4991

    Article  CAS  Google Scholar 

  40. Guan B, Lin H, Zhu L, Tian B, Huang Z (2012) Chem Eng J 181–182:307

    Article  Google Scholar 

  41. Lin CH, Bai H (2003) Appl Catal B 42:279

    Article  CAS  Google Scholar 

  42. Topsøe NY (1994) Science 265:1217

    Article  Google Scholar 

  43. Wu ZB, Jing BQ, Liu Y, Wang HQ, Jin RB (2007) Environ Sci Technol 41:5812

    Article  CAS  Google Scholar 

  44. Yeom YH, Wen B, Sachtler WMH, Weitz E (2004) J Phys Chem B 108:5386

    Article  CAS  Google Scholar 

  45. Liu Y, Gu TT, Weng XL, Wang Y, Wu ZB, Wang HQ (2012) J Phys Chem C 116:16582

    Article  CAS  Google Scholar 

  46. Shan WP, Liu FD, He H, Shi XY, Zhang CB (2012) Appl Catal B 115–116:100

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21577005, 21277009) and the National Key Research and Development Program of China (2016YFB0600405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong He or Wenge Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Zhang, R., Zang, S. et al. Activity of Selective Catalytic Reduction of NO over V2O5/TiO2 Catalysts Preferentially Exposed Anatase {001} and {101} Facets. Catal Lett 147, 934–945 (2017). https://doi.org/10.1007/s10562-017-1989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1989-5

Keywords

Navigation