Skip to main content
Log in

Binuclear Titanium Catalysts Based on Methylene-Bridged Tridentate Salicylaldiminato Ligands for Ethylene Homo- and Copolymerization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of methylene-bridged salicylaldiminato tridentate [ONS] ligands bearing different alkylthio sidearms and the corresponding binuclear titanium complexes (Ti 2 a, Ti 2 b, Ti 2 c) were synthesized and characterized by elemental analysis, ESI-MS, FT IR, 1H and 13C NMR. To the best of our knowledge, these were the first non-metallocene tridentate binuclear Ti complexes reported. When activated by modified methylaluminoxane (MMAO), these binuclear Ti complexes displayed extremely high activities in the range of 106 g mol−1 h−1 atm−1 for ethylene polymerization and ethylene/α-olefins copolymerization at atmospheric pressure, producing high molecular weight polymers with narrow polydispersity. Both the catalytic behavior and the spectroscopic characterization indicated that the catalysts assumed symmetric structure and contained single-site active species. Most importantly, the catalytic activities towards ethylene (co)polymerization as well as comonomer incorporation ratios were much higher than that of the corresponding mononuclear complexes. Meanwhile, the properties of polymers and the comonomer incorporation ratios can be effectively tuned by the reaction conditions and the alkylthio side group on ligands. Complex Ti 2 c bearing the long octylthio sidearm showed significantly higher activity for ethylene polymerization than the methylthio functionalized Ti 2 a, presumably due to the increased solubility of the catalyst in the reaction medium. While for copolymerization, complex Ti 2 a demonstrated the highest catalytic activity and comonomer incorporation ratio, due the small steric hindrance of the methylthio side group.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Natta G, Danusso F (eds) (1967) Stereoregular polymers and stereospecific polymerizations. Pergamon Press, Oxford

    Google Scholar 

  2. Kaminsky W (2004) J Polym Sci Part A 42:3911–3921

    Article  CAS  Google Scholar 

  3. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1204

    Article  CAS  Google Scholar 

  4. Bourget-Merle L, Lappert MF, Severn JR (2002) Chem Rev 102:3031–3065

    Article  CAS  Google Scholar 

  5. Gibson VC, Redshaw C, Solan GA (2007) Chem Rev 107:1745–1776

    Article  CAS  Google Scholar 

  6. Nomura K, Zhang S (2011) Chem Rev 111:2342–2362

    Article  CAS  Google Scholar 

  7. Budagumpi S, Kim KH, Kim I (2011) Coord Chem Rev 255:2785–2809

    Article  CAS  Google Scholar 

  8. Wang J, Nan F, Guo J, Wang J, Shi X, Huang H, Huang Q, Yang W (2016) Catal Lett 146:609–619

    Article  CAS  Google Scholar 

  9. Breuil PAR, Magna L, Olivier-Bourbigou H (2015) Catal Lett 145:173–192

    Article  CAS  Google Scholar 

  10. Netalkar SP, Netalkar PP, Sathisha MP, Budagumpi S, Revankar VK (2014) Catal Lett 144:181–191

    Article  CAS  Google Scholar 

  11. Stalzer MM, Delferro M, Marks TJ (2015) Catal Lett 145:3–14

    Article  CAS  Google Scholar 

  12. Yoshida Y, Mohri J, Ishii S, Mitani M, Saito J, Matsui S, Makio H, Nakano T, Tanaka H, Onda M, Yamamoto Y, Mizuno A, Fujita T (2004) J Am Chem Soc 126:12023–12032

    Article  CAS  Google Scholar 

  13. Kashiwa N, Fujita T (2001) J Am Chem Soc 123:6847–6856

    Article  Google Scholar 

  14. Makio H, Fujita T (2009) Acc Chem Res 42:1532–1544

    Article  CAS  Google Scholar 

  15. Matsugi T, Fujita T (2008) Chem Soc Rev 37:1264–1277

    Article  CAS  Google Scholar 

  16. Makio H, Terao H, Iwashita A, Fujita T (2011) Chem Rev 111:2363–2449

    Article  CAS  Google Scholar 

  17. Iwashita A, Chan MCW, Makio H, Fujita T (2014) Catal Sci Technol 4:599–610

    Article  CAS  Google Scholar 

  18. Xie G, Qian C (2008) J Polym Sci A: Polym Chem 46:211–217

    Article  CAS  Google Scholar 

  19. Xie G, Li Y, Sun J, Qian C (2009) Inorg Chem Commun 12:796–799

    Article  CAS  Google Scholar 

  20. Xie G, Li T, Zhang A (2010) Inorg Chem Commun 13:1199–1202

    Article  CAS  Google Scholar 

  21. Xie G, Liu G, Li L, Li T, Zhang A, Feng J (2014) Catal Commun 45:7–10

    Article  CAS  Google Scholar 

  22. Xie G, Zhang X, Li T, Li L, Liu G, Zhang A (2014) J Mol Catal A Chem 383–384:121–127

    Article  Google Scholar 

  23. Xie G, Song W, Li T, Xu X, Lan Z, Li Y, Zhang A (2014) J Appl Polym Sci 131:41178

    Google Scholar 

  24. Li T, Song W, Ai H, You Q, Zhang A, Xie G (2015) J Polym Res 22:631

    Article  Google Scholar 

  25. Redshaw C, Tang Y (2012) Chem Soc Rev 41:4484–4510

    Article  CAS  Google Scholar 

  26. Hu WQ, Sun XL, Wang C, Tang Y, Shi LP, Xia W, Sun J, Dai HL, Li XX, Yao XL, Wang XR (2004) Organometallics 23:1684–1688

    Article  CAS  Google Scholar 

  27. Wang C, Sun, XL, Guo YH, Gao Y, Liu B, Ma Z, Xia W, Shi LP, Tang Y (2005) Macromol Rapid Commun 26:1609–1614

    Article  CAS  Google Scholar 

  28. Wang C, Ma Z, Sun XL, Gao Y, Guo YH, Tang Y, Shi LP (2006) Organometallics 25:3259–3266

    Article  CAS  Google Scholar 

  29. Gao ML, Gu YF, Wang C, Yao XL, Sun XL, Li CF, Qian CT, Liu B, Ma Z, Tang Y, Xie ZW, Bu SZ, Gao Y (2008) J Mol Catal A Chem 292:62

    Article  CAS  Google Scholar 

  30. Gao ML, Sun XL, Gu YF, Yao XL, Li CF, Bai JY, Wang C, Ma Z, Tang Y, Xie ZW, Bu SZ, Qian CT (2008) J Poly Sci Part A 46:2807–2819

    Article  CAS  Google Scholar 

  31. Li L, Metz MV, Li H, Chen MC, Marks TJ, Liable-Sands L, Rheingold AL J Am Chem Soc 124:12725–12741

  32. Guo N, Li L, Marks TJ (2004) J Am Chem Soc 126:6542–6543

    Article  CAS  Google Scholar 

  33. Li H, Li L, Marks TJ (2004) Angew Chem Int Ed 43:4937–4940

    Article  CAS  Google Scholar 

  34. Li H, Marks TJ (2006) PNAS 103:15295–15302

    Article  CAS  Google Scholar 

  35. Salata MR, Marks TJ (2008) J Am Chem Soc 130:12–13

    Article  CAS  Google Scholar 

  36. Salata MR, Marks TJ (2009) Macromolecules 42:1920–1933

    Article  CAS  Google Scholar 

  37. Rodriguez BA, Delferro M, Marks TJ (2009) J Am Chem Soc 131:5902–5919

    Article  CAS  Google Scholar 

  38. Delferro M, Marks TJ (2011) Chem Rev 111:2450–2485

    Article  CAS  Google Scholar 

  39. Liu SF, Motta A, Delferro M, Marks TJ (2013) J Am Chem Soc 135:8830–8833

    Article  CAS  Google Scholar 

  40. McInnis JP, Delferro M, Marks TJ (2014) Acc Chem Res 47:2545–2557

    Article  CAS  Google Scholar 

  41. Liu SF, Motta A, Mouat AR, Delferro M, Marks TJ (2014) J Am Chem Soc 136:10460–10469

    Article  CAS  Google Scholar 

  42. Bratko I, Gómez M (2013) Dalton Trans 42:10664–10681

    Article  CAS  Google Scholar 

  43. Buchwalter P, Rosé J, Braunstein P (2015) Chem Rev 115:28–126

    Article  CAS  Google Scholar 

  44. Radlauer MR, Day MW, Agapie T (2012) J Am Chem Soc 134:1478–1481

    Article  CAS  Google Scholar 

  45. Radlauer MR, Buckley AK, Henling LM, Agapie T (2013) J Am Chem Soc 135:3784–3787

    Article  CAS  Google Scholar 

  46. Takeuchi D (2010) Dalton Trans 39:311–328

    Article  CAS  Google Scholar 

  47. Sachse A, Demeshko S, Dechert S, Daebel V, Lange A, Meyer F (2010) Dalton Trans 39:3903–3914

    Article  CAS  Google Scholar 

  48. Hu T, Tang LM, Li XF, Li YS, Hu NH (2005) Organometallics 24:2628–2632

    Article  CAS  Google Scholar 

  49. Zhang S, Vystorop I, Tang Z, Sun WH (2007) Organometallics 26:2456–2460

    Article  CAS  Google Scholar 

  50. Huang YB, Tang GR, Jin GY, Jin JX (2008) Organometallics 27:259–269

    Article  CAS  Google Scholar 

  51. Chen Q, Yu J, Huang J (2007) Organometallics 26:617–625

    Article  CAS  Google Scholar 

  52. Luo S, Shen B, Li B, Song H, Xu S, Wang B (2009) Organometallics 28:3109–3112

    Article  CAS  Google Scholar 

  53. Kuwabara J, Takeuchi D, Osakada K (2006) Chem Commun 36:3815–3817

    Article  Google Scholar 

  54. Han SL, Yao ED, Qin W, Zhang SF, Ma YG (2012) Macromolecules 45:4054–4059

    Article  CAS  Google Scholar 

  55. Canali L, Cowan E (2000) J Chem Sci Perkin Trans 13:2055–2066

    Article  Google Scholar 

  56. Yang XH, Wang Z, Sun XL, Tang Y (2009) Dalton Trans 8945–8954

Download references

Acknowledgements

The authors are grateful for the financial support from the Natural Sciences Foundation of China (21172269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Lan, Z., Xie, G. et al. Binuclear Titanium Catalysts Based on Methylene-Bridged Tridentate Salicylaldiminato Ligands for Ethylene Homo- and Copolymerization. Catal Lett 147, 996–1005 (2017). https://doi.org/10.1007/s10562-017-1985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1985-9

Keywords

Navigation