Skip to main content
Log in

Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Au Catalysts: Influence of the Oxide-Supports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Uniform Au particles with a mean size of 1.9 nm were initially synthesized with polyvinyl alcohol (PVA) as protecting agent, and then deposited on MgO, Al2O3, TiO2, Fe2O3, Co3O4, ZnO and In2O3. After calcinations at 300 °C in air to remove PVA, Au particles were highly dispersed and immobilized on all the supports, displaying narrow diameter distributions and almost identical mean sizes of 2.5–3.2 nm. The Au-oxides catalysts were further used to catalyze selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL). It was found that the selectivity of COL was tightly related to the acidity/basicity of the Au/oxides catalysts. The catalyst with only acidic sites such as the Au/Al2O3 catalyst gave very low selectivity of COL of 15%. The catalysts with only basic sites such as Au/MgO catalyst displayed medium selectivity of COL of 52%. Interesting, the Au catalysts with both acidic and basic sites such as the Au/In2O3 and Au/ZnO catalyts exhibited the highest selectivity of COL of around 86%. The synergistic cooperation of acidic sites and basic sites should be responsible for preferential adsorption and activation of the C=O group than C=C group in CAL, and then preferential hydrogenation of C=O to COL.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Ponec V (1997) Appl Catal A 149:27–48

    Article  CAS  Google Scholar 

  2. Okumura M, Akita T, Haruta M (2002) Catal Today 74:265–269

    Article  CAS  Google Scholar 

  3. Bailie JE, Hutchings GJ (1999) Chem Commun 21:2151–2152

    Article  Google Scholar 

  4. Bailie JE, Abdullah HA, Anderson JA, Rochester CH, Richardson NV, Hodge N, Zhang J, Burrows A, Kiely CJ, Hutchings GJ (2001) Phys Chem Chem Phys 3:4113–4121

    Article  CAS  Google Scholar 

  5. Zanella R, Louis C, Giorgio S, Touroude R (2004) J Catal 223:328–339

    Article  CAS  Google Scholar 

  6. Campo B, Petit C, Volpe MA (2008) J Catal 254:71–78

    Article  CAS  Google Scholar 

  7. Mohr C, Hofmeister H, Claus P (2003) J Catal 213:86–94

    Article  CAS  Google Scholar 

  8. Mohr C, Hofmeister H, Radnik J, Claus P (2003) J Am Chem Soc 125:1905–1911

    Article  CAS  Google Scholar 

  9. Wang MM, He L, Liu YM, Cao Y, He HY, Fan KN (2011) Green Chem. 13:602–607

  10. Zhu Y, Tian L, Jiang Z, Pei Y, Xie SH, Qiao MH, Fan KN (2011) J Catal 281:106–118

    Article  CAS  Google Scholar 

  11. Claus P, Brückner A, Mohr C, Hofmeister H (2000) J Am Chem Soc 122:11430–11439

    Article  CAS  Google Scholar 

  12. Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Ner G, Galvagno S (2005) J Catal 236:80–90

    Article  CAS  Google Scholar 

  13. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335

    Article  CAS  Google Scholar 

  14. Ta N, Liu JY, Chenna S, Crozier PA, Li Y, Chen AL, Shen WJ (2012) J Am Chem Soc 134:20585–20588

    Article  CAS  Google Scholar 

  15. Comotti M, Li WC, Spliehoff B, Schüth F (2006) J Am Chem Soc 128:917–924

    Article  CAS  Google Scholar 

  16. Liu Y, Jia CJ, Yamasaki J, Terasaki O, Schüth F (2010) Angwe Chem Int Ed 49:5771–5775

    Article  CAS  Google Scholar 

  17. Xue WJ, Wang YF, Li P, Liu ZT, Hao ZP, Ma CY (2011) Catal Commun 12:1265–1268

    Article  CAS  Google Scholar 

  18. Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2016) ACS Catal 6:3600–3609

    Article  CAS  Google Scholar 

  19. Yu Q, Bando KK, Yuan JF, Luo CQ, Jia AP, Hu GS, Lu JQ, Luo MF (2016) J Phys Chem C 120:8663–8673

    Article  CAS  Google Scholar 

  20. Chen J, Tian SH, Lu J, Xiong Y (2015) Appl Catal A 506:118–125

    Article  CAS  Google Scholar 

  21. Hu JC, Zhu KK, Chen LF, Kubel C, Richards R (2007) J Phys Chem C 111:12038–12044

    Article  CAS  Google Scholar 

  22. Paulis M, Peyrard H, Montes M (2001) J Catal 199:30–40

    Article  CAS  Google Scholar 

  23. Santos RCR, Pinheiro AN, Leite ER, Freire VN, Longhinotti E, Valentini A (2015) Mater Chem Phys 160:119–130

    Article  CAS  Google Scholar 

  24. Feng R, Liu ST, Bai P, Qiao K, Wang YH, Al-Megren HA, Rood MJ, Yan ZF (2014) J Phys Chem C 118:6226–6234

    Article  CAS  Google Scholar 

  25. Yu Q, Zhang XY, Li B, Lu JQ, Hu GS, Jia AP, Luo CQ, Hong QH, Song YP, Luo MF (2014) J Mol Catal A 392:89–96

    Article  CAS  Google Scholar 

  26. Ajaikumar S, Pandurangan A (2009) Appl Catal A 357:184–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Young Thousand Talents Program of China, the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA09030103), and National Natural Science Foundation of China (No. 21473186).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Bao or Jiahui Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 301 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, S., Pan, X. et al. Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Au Catalysts: Influence of the Oxide-Supports. Catal Lett 147, 102–109 (2017). https://doi.org/10.1007/s10562-016-1901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1901-8

Keywords

Navigation