Skip to main content

Advertisement

Log in

Application of Ni-Co/Mg-Al Catalyst System for Hydrogen Production via Supercritical Water Gasification of Lignocellulosic Biomass

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalysts containing Ni and/or Co supported by Mg-Al were prepared using impregnation and co-precipitation methods. They were firstly evaluated for hydrogen production via supercritical water gasification (SCWG) of lignin. The effects of preparation method, active metal, and catalyst loading were studied. The identified best catalyst was then evaluated using other biomass including cellulose, wheat straw, timothy grass, and canola meal. The results reveal that Ni-Co combination is better than either Ni or Co as active metals to achieve optimum hydrogen yield. Also, co-precipitation method is better than impregnation method for the catalyst preparation. The coprecipitated CopCat-Ni2Co4 catalyst showed highest hydrogen yield from SCWG of lignin and showed decent hydrogen yield from various biomass feedstocks. The maximum hydrogen yield of 3.94 mmol/g was observed with SCWG of canola meal using the CopCat-Ni2Co4 catalyst. The results suggest that CopCatNi2-Co4/Mg-Al catalyst is a flexible and capable catalyst for hydrogen production from the SCWG of biomass.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489

    Article  CAS  Google Scholar 

  2. Hoogwijk M, Faaij A, van den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25(2):119–133

    Article  Google Scholar 

  3. Li S-H, Liu S, Colmenares JC, Xu Y-J (2016) A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem 18(3):594–607

    Article  CAS  Google Scholar 

  4. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55(29):8164–8215

    Article  CAS  Google Scholar 

  5. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Jerry Antal Jr M (2005) Biomass gasification in near- and super-critical water: Status and prospects. Biomass Bioenergy 29(4):269–292

    Article  CAS  Google Scholar 

  6. Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sustain Energy Rev 14(1):334–343

  7. Fang Z (2014) Near-critical and supercritical water and their applications for biorefineries. Springer, Berlin

    Book  Google Scholar 

  8. Savage PE (2009) A perspective on catalysis in sub- and supercritical water. J Supercritical Fluids 47(3):407–414

    Article  CAS  Google Scholar 

  9. Yanik J, Ebale S, Kruse A, Saglam M, Yüksel M (2008) Biomass gasification in supercritical water: II. Effect of catalyst. Int J Hydrog Energy 33(17):4520–4526

    Article  CAS  Google Scholar 

  10. Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249(2):300–310

    Article  CAS  Google Scholar 

  11. Li S, Guo L, Zhu C, Lu Y (2013) Co-precipitated Ni–Mg–Al catalysts for hydrogen production by supercritical water gasification of glucose. Int J Hydrog Energy 38(23):9688–9700

    Article  CAS  Google Scholar 

  12. Wang H, Miller JT, Shakouri M, Xi C, Wu T, Zhao H, Akatay MC (2013) XANES and EXAFS studies on metal nanoparticle growth and bimetallic interaction of Ni-based catalysts for CO2 reforming of CH4. Catal Today 207(0):3–12

    Article  CAS  Google Scholar 

  13. Kang K, Azargohar R, Dalai AK, Wang H (2016) Systematic screening and modification of Ni based catalysts for hydrogen generation from supercritical water gasification of lignin. Chem Eng J 283:1019–1032

    Article  CAS  Google Scholar 

  14. Kang K, Azargohar R, Dalai AK, Wang H (2016) Hydrogen production from lignin, cellulose and waste biomass via supercritical water gasification: Catalyst activity and process optimization study. Energy Conv Manag 117:528–537

    Article  CAS  Google Scholar 

  15. Kobayashi N, Guilin P, Kobayashi J, Hatano S, Itaya Y, Mori S (2008) A new pulverized biomass utilization technology. Powder Technol 180(3):272–283

    Article  CAS  Google Scholar 

  16. Nanda S, Mohanty P, Pant K, Naik S, Kozinski J, Dalai A (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. BioEnergy Res 6(2):663–677

    Article  CAS  Google Scholar 

  17. Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266

    Article  CAS  Google Scholar 

  18. Tilay A, Azargohar R, Gerspacher R, Dalai A, Kozinski J (2014) Gasification of canola meal and factors affecting gasification process. BioEnergy Res 7(4):1131–1143

    Article  CAS  Google Scholar 

  19. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100(3):1413–1418

    Article  CAS  Google Scholar 

  20. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ (2010) Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol 101(12):4584–4592

    Article  CAS  Google Scholar 

  21. Standard A (2008) D3174-04 in standard test method for ash in the analysis sample ofcoal and coke from coal. ASTM International, West Conshohocken

    Google Scholar 

  22. Afif E, Azadi P, Farnood R (2011) Catalytic hydrothermal gasification of activated sludge. Appl Catal B Environ 105(1–2):136–143

    Article  CAS  Google Scholar 

  23. Yang H, Yan R; Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  24. Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103(1):123–129

    Article  CAS  Google Scholar 

  25. Yan B, Wu J, Xie C, He F, Wei C (2009) Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercritical Fluids 50(2):155–161

    Article  CAS  Google Scholar 

  26. Zhang LH, Champagne P, Xu CB (2011) Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification. Int J Hydrog Energy 36(16):9591–9601

    Article  CAS  Google Scholar 

  27. Zhang L, Xu C, Champagne P (2012) Activity and stability of a novel Ru modified Ni catalyst for hydrogen generation by supercritical water gasification of glucose. Fuel 96:541–545

    Article  CAS  Google Scholar 

  28. Wang J, Liu Y, Cheng T, Li W, Bi Y, Zhen K (2003) Methane reforming with carbon dioxide to synthesis gas over Co-doped Ni-based magnetoplumbite catalysts. Appl Catal A General 250(1):13–23

    Article  CAS  Google Scholar 

  29. Wang L, Li D, Koike M, Watanabe H, Xu Y, Nakagawa Y, Tomishige K (2013) Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel 112:654–661

    Article  CAS  Google Scholar 

  30. Xu J, Zhou W, Li Z, Wang J, Ma J (2009) Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. Int J Hydrog Energy 34(16):6646–6654

    Article  CAS  Google Scholar 

  31. Zhang J, Wang H, Dalai AK (2008) Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4. Appl Catal A General 339(2):121–129

    Article  CAS  Google Scholar 

  32. Koh ACW, Chen L, Kee Leong W, Johnson BFG, Khimyak T, Lin J (2007) Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel–cobalt catalysts. Int J Hydrog Energy 32(6):725–730

    Article  CAS  Google Scholar 

  33. Dhepe PL, Fukuoka A (2008) Cellulose conversion under heterogeneous catalysis. ChemSusChem 1(12):969–975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the financial support from the Natural Science and Engineering Research Council of Canada (NSERC), Canada Research Chairs Program (CRCP), BioFuelNet Canada, and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K., Shakouri, M., Azargohar, R. et al. Application of Ni-Co/Mg-Al Catalyst System for Hydrogen Production via Supercritical Water Gasification of Lignocellulosic Biomass. Catal Lett 146, 2596–2605 (2016). https://doi.org/10.1007/s10562-016-1891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1891-6

Keywords

Navigation