Skip to main content
Log in

The Effect of Rh on the Interaction of Co with Al2O3 and CeO2 Supports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Co and Rh+Co catalysts supported on Al2O3 and CeO2 were investigated by temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The CeO2 defects, resulted from the effects of the metals, were further analyzed by Raman spectroscopy and optical absorption. Although the interaction of Co with these two supports is fairly different, it can be concluded that Rh inhibits the strong Co-support interaction. It was revealed that Co over Al2O3 forms mainly Co2+ compounds, only a smaller fraction of cobalt is in metallic state. After the addition of 0.1 % Rh, Co3O4 like species is dominant, the amount of metallic state increased after reduction. Over CeO2 the Co dissolution into the support was inhibited by Rh. A wide range of TPR results proved the stepwise reduction of Co, which was promoted by the addition of Rh. By Rh the entire mechanism of this process was altered that can be observed even by XPS. On the basis of the Raman and the optical measurements we concluded that the metals induce defect sites on the CeO2 surface, and these appear as similar features on the spectra of Co and Rh containing samples, thus their density depends on the metal loading and not on the metal type. CeO2 has a bandgap of 3.27 eV, which is not altered by the metals, but an electronic contact was detected between the metals and CeO2 by photovoltammetry. The increased number of metallic species is mainly responsible for the higher catalytic activity and for the enhanced hydrogen selectivity in the stream reforming of ethanol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Breyssea M, Afanasiev P, Geantet C, Vrinat M (2003) Catal Today 86:5–16

    Article  Google Scholar 

  2. Saeidi S, Amin NAS, Rahimpour MR (2014) J CO2 Util 5: 66–81

  3. Enger BC, Lodeng R, Holmen A (2010) Catal Lett 134:13–23

    Article  CAS  Google Scholar 

  4. Pusztai P, Puskás R, Varga E et al (2014) Phys Chem Chem Phys 16:26786–26797

    Article  CAS  Google Scholar 

  5. Mullins DR (2015) Surf Sci Rep 70:42–85

    Article  CAS  Google Scholar 

  6. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094–4123

    Article  CAS  Google Scholar 

  7. Liu W, Flytzani-Stephanopoulos M (1995) J Catal 153:317–332

    Article  CAS  Google Scholar 

  8. Rodriguez JA, Liu P, Hrbek J, Evans J, Manuel P (2007) Angew Chem Int Ed 46:1329–1332

    Article  CAS  Google Scholar 

  9. Mullins DR, Albrecht PM, Chen T-L et al (2012) J Phys Chem C 116:19419–19428

    Article  CAS  Google Scholar 

  10. Guczi L, Boskovic G, Kiss E (2010) Chem Rev 52:133–203

    CAS  Google Scholar 

  11. Zhang Y, Chen L, Bai G, Li Y, Yan X (2005) J Catal 236:176–180

    Article  CAS  Google Scholar 

  12. Riedel T, Claeys M, Schulz H et al (1999) Appl Catal A 186:201–213

    Article  CAS  Google Scholar 

  13. Melaet G, Lindeman AE, Somorjai GA (2014) Top Catal 57:500–507

    Article  CAS  Google Scholar 

  14. Chu W, Chernavskii PA, Gengembre L, Parkina GA, Fongarland P, Khodakov AY (2007) J Catal 252:215–230

    Article  CAS  Google Scholar 

  15. Ferencz Z, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdőhelyi A (2014) Catal Today 228:123–130

    Article  CAS  Google Scholar 

  16. Ruckenstein E, Wang HY (2002) J Catal 205:289–293

    Article  CAS  Google Scholar 

  17. Badlani M, Wachs IE (2001) Catal Lett 75:137–149

    Article  CAS  Google Scholar 

  18. Tóth M, Varga E, Oszkó A, Baán K, Kiss J, Erdőhelyi A (2016) Appl Catal A 411:377–387

    Article  Google Scholar 

  19. Ferencz Z, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück H-P, Kiss J (2014) ACS Catal 4:1205–1218

    Article  CAS  Google Scholar 

  20. Martono E, Vohs JM (2012) J Catal 291:79–86

    Article  CAS  Google Scholar 

  21. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticinalli EA (2003) J Power Sources 124:99–103

    Article  CAS  Google Scholar 

  22. Lin SSY, Kim DH, Engelhard MH, Ha SY (2010) J Catal 273:229–235

    Article  CAS  Google Scholar 

  23. Varga E, Ferencz Z, Oszkó A, Erdőhelyi A, Kiss J (2015) J Mol Catal A 397:127–133

    Article  CAS  Google Scholar 

  24. Profeti LPR, Ticianelli EA, Assaf EM (2008) J Power Sources 175:485–489

    Article  Google Scholar 

  25. Espinal R, Taboada E, Molins E, Chimentao RJ, Medina F, Llorca J (2013) Top Catal 56:1660–1671

    Article  CAS  Google Scholar 

  26. Pereira EB, Piscina PR, Marti S, Homs N (2010) Energy Environ Sci 3:486–492

    Article  Google Scholar 

  27. Kormányos A, Thomas A, Huda MN, Sarker P, Liu JP, Poudyal N, Janáky C, Rajechwar K (2016) J Phys Chem C. doi:10.1021/acs.jpcc.1025b12738

    Google Scholar 

  28. Chin RL, Hercules DM (1982) J Phys Chem 86:360–367

    Article  CAS  Google Scholar 

  29. Liotta LF, Carlo GD, Pantaleo G, Venezia AM, Deganello G (2006) Appl Catal B 66:217–227

    Article  CAS  Google Scholar 

  30. Jacobs G, Ma W, Davis BH (2014) Catalysts 4:49–76

    Article  Google Scholar 

  31. Ali S, Zabidi NAM, Subbarao D (2011) Chem Centr J 5:68

    Article  CAS  Google Scholar 

  32. Das TK, Jacobs G, Patterson PM, Conner WA, Li J, Davis BH (2003) Fuel 82:805–815

    Article  CAS  Google Scholar 

  33. Ewbank JL, Kovarik L, Kenvina C, Sievers C (2014) Green Chem 16:885–896

    Article  CAS  Google Scholar 

  34. Bulavchenko OA, Cherepanova SV, Malakhov VV, Dovlitova LS, Ishchenko AV, Tsybulya SV (2009) Kinet Catal 50:192–198

    Article  CAS  Google Scholar 

  35. Simionato M, Assaf EM (2003) Mater Res 6:535–539

    Article  CAS  Google Scholar 

  36. Cook KM, Poudyal S, Miller JT, Bartholomew C, Hecker WC (2012) Appl Catal A 449:69–80

    Article  CAS  Google Scholar 

  37. Kogelbauer A, Goodwin JJG, Oukaci R (1996) J Catal 160:125–133

    Article  CAS  Google Scholar 

  38. Guczi L, Hoffer T, Zsoldos Z, Zyade S, Maire G, Garin F (1991) J Phys Chem 95:802–808

    Article  CAS  Google Scholar 

  39. Varga E, Pusztai P, Óvári L, Oszkó A, Erdőhelyi A, Papp C, Steinrück H-P, Kónya Z, Kiss J (2015) Phys Chem Chem Phys 17:25166–27157

    Article  Google Scholar 

  40. Frost CD, McDowell CA, Woolsey IS (1972) Chem Phys Lett 17:320–323

    Article  CAS  Google Scholar 

  41. Schmid M, Kaftan A, Steinrück HP, Gottfried JM (2012) Surf Sci 606:945–949

    Article  CAS  Google Scholar 

  42. Cascales C, Rasines I (1984) Mater Chem Phys 10:199–203

    Article  CAS  Google Scholar 

  43. Daniel M, Loriant S (2012) J Raman Spectrosc 43:1312–1319

    CAS  Google Scholar 

  44. Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Cho MH (2014) Ind Eng Chem Res 53:9754–9763

    Article  CAS  Google Scholar 

  45. Aslam M, Oamar MT, Soomro MT, Ismail IMI, Salah N, Almeelbi T, Gonda A, Hameed A (2016) Appl Catal B 180:391–402

    Article  CAS  Google Scholar 

  46. Verma R, Samdarshi SK, Bojja S, Paul S, Choudhury B (2015) Sol Energ Mater Sol Cells 141:414–422

    Article  CAS  Google Scholar 

  47. Watson AM, Zhang X, de la Osa RA, Sanz JM, González F, Moreno F, Finkelstein G, Liu J, Everitt HO (2015) Nano Lett 15:1095–1100

    Article  CAS  Google Scholar 

  48. Zhang X, Li P, Barreda A, Gutiérrez Y, González F, Moreno F, Everitt HOJ (2016) Nanoscale Horiz 1:75–80

    Article  Google Scholar 

  49. Balestrieri M, Colis S, Gallart M, Schember G, Ziegler M, Gilliot P, Dinia A (2015) J Mater Chem C 3:7014–7021

    Article  CAS  Google Scholar 

  50. Wang Z, Quan Z, Lin J (2007) Inorg Chem 46:5237–5242

    Article  Google Scholar 

  51. Balasanthiran C, Hoefelmeyer JD (2014) Chem Commun 50:5721–5724

    Article  CAS  Google Scholar 

  52. Varga E, Pusztai P, Oszkó A, Baán K, Erdőhelyi A, Kónya Z, Kiss J (2016) Langmuir 32:2761–2770

    Article  CAS  Google Scholar 

  53. Li B, Gu T, Wang J, Wang P, Wang J, Yu JC (2014) ACS Nano 8:8152–8162

    Article  CAS  Google Scholar 

  54. Subramanian V, Wolf EE, Kamat VP (2004) J Am Chem Soc 126:4943–4950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Csaba Janáky for the discussion about the photoelectrochemical results and Levente Koppány Juhász for the Raman spectroscopic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Kiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, E., Baán, K., Samu, G.F. et al. The Effect of Rh on the Interaction of Co with Al2O3 and CeO2 Supports. Catal Lett 146, 1800–1807 (2016). https://doi.org/10.1007/s10562-016-1809-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1809-3

Keywords

Navigation