Skip to main content
Log in

Insights into the Reaction Mechanism of Cyclohexane Oxidation Catalysed by Molybdenum Blue Nanorings

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Molybdenum blue (MB), is a polyoxometalate with a nanoring structure comprising Mo5+–O–Mo6+ bridges, which is active for the catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone. However, little is known about the mechanistic features responsible of this catalytic activity. In the present work, the Mo5+–O–Mo6+ moieties embedded in the MB nanoring structure were characterized using diffuse reflectance-UV–Visible spectroscopy and solid state EPR spectroscopy. The amount of Mo5+ centres was then varied by thermal treatment of the polyoxometalate in the absence of oxygen, and the resultant effect on the catalytic activity was investigated. It was observed that, an increased amount of Mo5+ centres preserved the conversion of cyclohexane (ca. 6 %) but led to a loss of selectivity to cyclohexanol giving cyclohexanone as the major product, and the simultaneous formation of adipic acid. To rationalise these results the catalysts were studied using EPR spin trapping to investigate the decomposition of cyclohexyl hydroperoxide (CHHP), a key intermediate in the oxidation process of cyclohexane. This analysis showed that CHHP has to be bound to the MB surface in order to explain its catalytic activity and product distribution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. He Z, Honeycutt C (2005) Commun Soil Sci Plan 36:1373

    Article  CAS  Google Scholar 

  2. Deng SP, Tabatabai MA (1994) Soil Biol Biochem 26:473

    Article  CAS  Google Scholar 

  3. Müller A, Meyer J, Krickemeyer E, Diemann E (1996) Angew Chem Int Ed 35:1206

    Article  Google Scholar 

  4. Müller A, Serain C (2000) Acc Chem Res 33:2

    Article  Google Scholar 

  5. Xuan W, Surman AJ, Miras HN, Long DL, Cronin L (2014) J Am Chem Soc 136:14114

    Article  CAS  Google Scholar 

  6. Long DL, Tsunashima R, Cronin L (2010) Angew Chem Int Ed 49:1736

    Article  CAS  Google Scholar 

  7. Miras HM, Richmond CJ, Long DL, Cronin L (2012) J Am Chem Soc 134:3816

    Article  CAS  Google Scholar 

  8. Zhong D, Sousa FL, Müller A, Chi L, Fuchs H (2011) Angew Chem Int Ed 50:7018

    Article  CAS  Google Scholar 

  9. Liu X, Conte M, Weng W, He Q, Jenkins RL, Watanabe M, Knight DW, Murphy DM, Whiston K, Kiely CJ, Hutchings GJ (2015) Catal Sci Technol 5:217

    Article  CAS  Google Scholar 

  10. Vanoppen DL, De Vos DE, Genet MJ, Rouxhet PG, Jacobs PA (1995) Angew Chem Int Ed 34:560

    Article  CAS  Google Scholar 

  11. Guo CC, Chu MF, Liu Q, Liu Y, Guo DC, Liu XQ (2003) Appl Catal A 246:303

    Article  CAS  Google Scholar 

  12. Kumar R, Sithambaram S, Suib SL (2009) J Catal 262:304

    Article  CAS  Google Scholar 

  13. Dapurkar SE, Sakthivel A, Selvam P (2004) J Mol Catal A 223:241

    Article  CAS  Google Scholar 

  14. Hereijgers BPC, Weckhuysen BM (2010) J Catal 270:16

    Article  CAS  Google Scholar 

  15. Ressler T, Walter A, Huang ZD, Bensch W (2008) J Catal 254:170

    Article  CAS  Google Scholar 

  16. Conte M, Chechik V (2010) Chem Commun 46:3991

    Article  CAS  Google Scholar 

  17. Langhals H (2000) Spectrochim Acta A 56:2207

    Article  Google Scholar 

  18. Leandri R (2001) J. Chemometrics 15:559

    Article  Google Scholar 

  19. Alper JS, Gelb RI (1990) J Phys Chem 94:4741

    Google Scholar 

  20. Simulations were carried out using WinSim software: http://www.niehs.nih.gov/research/resources/software/tox-pharm/tools/index.cfm

  21. Conte M, Ma Y, Loyns C, Price P, Rippon D, Chechik V (2009) Org Biomol Chem 7:2685

    Article  CAS  Google Scholar 

  22. Walling C, Buckler SA (1955) J Am Chem Soc 77:6032

    Article  CAS  Google Scholar 

  23. Labanowska M (1999) Phys Chem Chem Phys 1:5385

    Article  CAS  Google Scholar 

  24. Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X (2013) Nat Commun 4:2642

    Google Scholar 

  25. Dyrek K, Che M (1997) Chem Rev 97:305

    Article  CAS  Google Scholar 

  26. Bugayev AA, Nikitin SE (2000) Opt Commun 180:69

    Article  CAS  Google Scholar 

  27. Glover SD, Kubiak CP (2011) J Am Chem Soc 133:8721

    Article  CAS  Google Scholar 

  28. Brunschwig BS, Creutz C, Sutin N (2000) Chem Soc Rev 31:168

    Article  Google Scholar 

  29. Canzi G, Goeltz JC, Henderson JS, Park RE, Maruggi C, Kubiak CP (2014) J Am Chem Soc 136:1710

    Article  CAS  Google Scholar 

  30. Chithambararaj A, Sanjini NS, Velmathi S, Bose AC (2013) Phys Chem Chem Phys 15:14761

    Article  CAS  Google Scholar 

  31. Hussain Z (2001) J Mater Res 16:2695

    Article  CAS  Google Scholar 

  32. Uemura T, Ohba M, Kitagawa S (2004) Inorg Chem 43:7339

    Article  CAS  Google Scholar 

  33. He T, Yao J (2003) J Photochem Photobiol C 4:125

    Article  CAS  Google Scholar 

  34. Chudnovskii FA, Schaefer DM, Gavrilyuk AI, Reifenberger R (1992) Appl Surf Sci 62:145

    Article  CAS  Google Scholar 

  35. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219

    Article  CAS  Google Scholar 

  36. Torok B, Torok M, Rozsa-Tarjani M, Palinko I, Horvath LI, Kiricsi I, Molnar A (2000) Inorg Chim Acta 298:77

    Article  CAS  Google Scholar 

  37. Catoire B (ed) (1992) Electron spin resonance (ESR) applications in organic and bioorganic materials. Springer, Berlin, p 190

    Google Scholar 

  38. Berliner L (ed) (2003) In Vivo EPR (ESR): Theory and Application in Biologic Magnetic resonance. Kluwr/Plenum publishers, New York, p 442

    Google Scholar 

  39. Chiesa M, Giamello E, Che M (2010) Chem Rev 110:1320

    Article  CAS  Google Scholar 

  40. Liu X, Ryabenkova Y, Conte M (2015) Phys Chem Chem Phys 17:715

    Article  CAS  Google Scholar 

  41. Partenheimer W (1995) Catal Today 23:69

    Article  CAS  Google Scholar 

  42. Hermans I, Jacobs PA, Peeters J (2006) Chem Eur J 12:4229

    Article  CAS  Google Scholar 

  43. Weinstein J, Bielski BHJ (1979) J Am Chem Soc 101:58

    Article  CAS  Google Scholar 

  44. Tanase S, Bouwman E, Reedijk J (2004) Appl Catal A 259:101

    Article  CAS  Google Scholar 

  45. Ramanathan A, Hamdy MS, Parton R, Maschmeyer T, Jansen JC, Hanefeld U (2009) Appl Catal A 355:78

    Article  CAS  Google Scholar 

  46. Hmady MS, Ramanathan A, Maschmeyer T, Hanefled U, Jansen JC (2006) Chem Eur J 12:1782

    Article  Google Scholar 

  47. Conte M, Miyamura H, Kobayashi S, Chechik V (2009) J Am Chem Soc 131:7189

    Article  CAS  Google Scholar 

  48. Conte M, Wilson K, Chechik V (2007) Org Biomol Chem 7:1361

    Article  Google Scholar 

  49. Novak M, Brodeur BA (1984) J Org Chem 49:1142

    Article  CAS  Google Scholar 

  50. Baum SL, Anderson IGM, Baker RR, Murphy DM, Rowlands CC (2003) Anal Chim Acta 481:1

    Article  CAS  Google Scholar 

  51. Davies MJ, Slater TF (1986) Biochem J 240:789

    Article  CAS  Google Scholar 

  52. Janzen EG, Evans CA, Liu JP (1973) J Magn Reson 9:513

    CAS  Google Scholar 

  53. Conte M, Wilson K, Chechik V (2010) Rev Sci Instrum 81:104102

    Article  Google Scholar 

  54. Ionita P, Conte M, Gilbert BC, Chechik V (2007) Org Biomol Chem 5:3504

    Article  CAS  Google Scholar 

  55. Conte M, Liu X, Murphy DM, Whiston K, Hutchings GJ (2012) Phys Chem Chem Phys 14:16279

    Article  CAS  Google Scholar 

  56. Silke EJ, Pitz WJ, Westbrook CK, Ribaucour M (2007) J Phys Chem A 111:3761

    Article  CAS  Google Scholar 

  57. Lee SO, Raja R, Harris KDM, Thomas JM, Brian BFG, Sankar G (2003) Angew Chem Int Ed 42:1520

    Article  CAS  Google Scholar 

  58. Jensen RK, Korcek S, Mahoney LR, Zinbo M (1981) J Am Chem Soc 103:1742

    Article  CAS  Google Scholar 

  59. Modén B, Zhan BZ, Dakka J, Santiesteban JG, Iglesia E (2006) J Catal 239:390

    Article  Google Scholar 

  60. Stark MS (2002) J Am Chem Soc 122:4162

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of INVISTA Textiles (UK) Limited, INVISTA Intermediates and INVISTA Technologies S. à r. l.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, M., Liu, X., Murphy, D.M. et al. Insights into the Reaction Mechanism of Cyclohexane Oxidation Catalysed by Molybdenum Blue Nanorings. Catal Lett 146, 126–135 (2016). https://doi.org/10.1007/s10562-015-1660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1660-y

Keywords

Navigation