Skip to main content
Log in

Selective Oxidation of Methanol to Formaldehyde Over Active Molybdenum Oxide Supported on Hydroxyapatite Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAP) was synthesized by sol–gel method. Different ratios of molybdenum oxide (1–15 % w/w) supported on HAP were prepared by the impregnation method and calcined at 400 °C in a static air atmosphere. The catalysts were characterized by thermogravimetry, differential thermal analysis, X-ray diffraction, FTIR spectroscopy and nitrogen sorption measurements. The surface acidity of the catalysts was investigated by the dehydration of isopropyl alcohol and the adsorption of pyridine (PY) and 2,6-dimethyl pyridine (DMPY). The gas–phase oxidation of methanol to formaldehyde was carried out in a conventional fixed-bed flow type reactor using N2 as a carrier gas. The obtained results clearly revealed that HAP–MoO3 systems were active and selective towards the formation of formaldehyde. The maximum yield of formaldehyde (97 %) was achieved on the catalyst containing 5 wt% MoO3/HAP. The generation of Mo6+as Lewis together with Brønsted acid sites play the main role in the formation of formaldehyde.

Graphical Abstract

Catalytic oxidation of methanol over MoO3/HAP calcined at 400 °C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tatibouet JM (1997) J Appl Catal A 148:213

    Article  Google Scholar 

  2. Stiles B, Koch TA (1995) Catalyst manufacture, vol 2. Marcel Dekker, New York, p 197

    Google Scholar 

  3. ECN (1994) Process Review, April 30

  4. Chauvel R, Curty PR, Maux R, Petipas C (1973) Hydrocarb Process 52:179

    CAS  Google Scholar 

  5. Yang TJ, Lunsford JH (1987) J Catal 103:55

    Article  CAS  Google Scholar 

  6. Matsuoka Y, Niwa M, Murakami Y (1990) J Phys Chem 94:1477

    Article  CAS  Google Scholar 

  7. Kim DS, Wachs IE, Segawa K (1994) J Catal 149:268

    Article  CAS  Google Scholar 

  8. Hu H, Wachs IE (1995) J Phys Chem 99:10911

    Article  CAS  Google Scholar 

  9. Niwa M, Igarashi J (1999) Catal Today 52:71

    Article  CAS  Google Scholar 

  10. Muragan R, Ramakrishna S (2005) Comput Sci Techol 65:2385

    Article  Google Scholar 

  11. Kebby LC, Hall KW (1973) J Catal 29:144

    Article  Google Scholar 

  12. Yasukawa A, Yokoyama T, Kandori K, Iswkawa T (2004) Colloids Surf A 238:133

    Article  CAS  Google Scholar 

  13. Boucetta C, Casimi M, Ensuque A, Piquemal J-Y, Bozon-Verduraz F, Ziyad M (2009) Appl Catal A 356:201

    Article  CAS  Google Scholar 

  14. Sugiyama S, Osaka T, Hirata Y, Sotowa K (2005) Appl Catal A 312:52

    Article  Google Scholar 

  15. El-Kabouss K, Kasimi M, Ziyad M, Amar S, Bozon-Verduraz F (2006) J Mater Chem 16:2453

    Article  CAS  Google Scholar 

  16. Pivtedu LD, Girona MI, Schlapbach L, Barbour P, Pilot JB, Gasser B (1999) J Mater Sci Mater Med 10:161

    Google Scholar 

  17. Gross KA, Chai CS, Kanangra GSK, Bin-Nissa B, Hanley L (1998) J Mater Sci Mater Med 9:839

    Article  CAS  Google Scholar 

  18. Hwang K, Lim Y (1999) Surf Coat Technol 115:172

    Article  CAS  Google Scholar 

  19. Haddow DB, James PF, Van-Noort R (1998) J Sol–Gel Sci Technol 13:261

    Article  CAS  Google Scholar 

  20. Yaung RA, Holcomb DW (1982) Calif Tissue Int 34:17

    Google Scholar 

  21. Slosarezyk A, Stobierska E, Paszkiewicz Z, Gawlick M (1996) J Am Ceram Soc 79:2539

    Article  Google Scholar 

  22. Yoshimura M, Suda H, Okamoto K, Ioku K (1994) J Mater Sci 29:3399

    Article  CAS  Google Scholar 

  23. Said AA, Abd-El-Wahab MM, Alian AM (2014) IOP Conf Mater Sci Eng 64:012058

    Article  Google Scholar 

  24. Bigi A, Boanini E, Rubini K (2004) J Solid State Chem 177:3092

    Article  CAS  Google Scholar 

  25. Cullity BD (1967) Elements of X-ray diffraction, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  26. Said AA, Abd El-Wahab MM, Abd El-Aal M (2014) J Mol Catal A 394:40

    Article  CAS  Google Scholar 

  27. Waterhouse GIN, Bowmaker GA, Metson JB (2004) Appl Catal A 265:85

    Article  CAS  Google Scholar 

  28. Ramanan SR, Venkatesh R (2004) Mater Lett 58:3320

    Article  CAS  Google Scholar 

  29. Han Y, Wang X, Li S, Ma X (2009) J Sol–Gel Sci Technol 49:125

    Article  CAS  Google Scholar 

  30. Klinkaewnarong J, Swatsitang E, Maensiri S (2009) Solid State Sci 11:1023

    Article  CAS  Google Scholar 

  31. Ryu J, Yoon J, Lim C, Oh W, Shim K (2005) J Alloys Compd 390:245

    Article  CAS  Google Scholar 

  32. Yoon JW, Ryu JH, Shim KB (2006) Mater Sci Eng B 127:154

    Article  CAS  Google Scholar 

  33. Eslami H, Solati-Hashjin M, Tahriri M, Bakhshi F (2010) Mater Sci Poland 28:5

    CAS  Google Scholar 

  34. Brunauer SJ, Deming LS, Deming W, Teller E (1940) J Am Chem Soc 62:1723

    Article  CAS  Google Scholar 

  35. de Boer JH, Everett EP, Stone FS (eds). (1958) The structure and properties of porous materials. Butterworths, London, p 68

  36. El-Nabarawy TH, Fagal GA, El-Shobaky GA (1989) Bull NRC Egypt 14:1

    Google Scholar 

  37. Said AA, Abd El-Wahab MMM, Alian AM (2007) J Chem Technol Biotechnol 82:513

    Article  CAS  Google Scholar 

  38. Soares APV, Portela MF, Kiennemann A, Hilaire L, Millet JMM (2001) Appl Catal A 206:221

    Article  CAS  Google Scholar 

  39. Davydov AA (1990) Infrared spectroscopy of adsorbed species the surface of transition metal oxides. Wiley, Chichester

    Google Scholar 

  40. Hadjiivanov K, Busca G (1994) Langmuir 10:4534

    Article  CAS  Google Scholar 

  41. Klissurski D, Petridis D, Abadzhieva N, Hadjiivanov K (1996) Appl Clay Sci 10:45l

    Article  Google Scholar 

  42. El-Awad AM, Hassan EA, Said AA, AbdEl-Salaam KM (1989) Monatshefte fur Chemie 120:199

    Article  CAS  Google Scholar 

  43. Damyanova S, Grange P, Delmon B (1997) J Catal 168:421

    Article  CAS  Google Scholar 

  44. Massoth PE (1978) Adv Catal 27:265

    CAS  Google Scholar 

  45. Crosman A, Gelbard G, Poncelel G, Parvulescu VI (2004) Appl Catal A 264:23

    Article  CAS  Google Scholar 

  46. Wakamura M, Kandori K, Iskikawa T (1998) Colloids Surf A 142:107

    Article  CAS  Google Scholar 

  47. Kato A, Shi SO, Shishido T, Yamazaki M, Iida S (2005) J Phys Chem Solids 66:2079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd El-Aziz A. Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, A.EA.A., El-Wahab, M.M.M.A. & Alian, A.M. Selective Oxidation of Methanol to Formaldehyde Over Active Molybdenum Oxide Supported on Hydroxyapatite Catalysts. Catal Lett 146, 82–90 (2016). https://doi.org/10.1007/s10562-015-1624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1624-2

Keywords

Navigation