Skip to main content
Log in

Solvent-Free Microwave-Assisted Peroxidative Oxidation of Alcohols Catalyzed by Iron(III)-TEMPO Catalytic Systems

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The iron(III) complexes [H(EtOH)][FeCl2(L)2] (1), [H2bipy]1/2[FeCl2(L)2].DMF (2) and [FeCl2(L)(2,2′-bipy)] (3) (L = 3-amino-2-pyrazinecarboxylate; H2bipy = doubly protonated 4,4′-bipyridine; 2,2′-bipy = 2,2′-bipyridine, DMF = dimethylformamide) have been synthesized and fully characterized by IR, elemental and single-crystal X-ray diffraction analyses, as well as by electrochemical methods. Complexes 1 and 2 have similar mononuclear structures containing different guest molecules (protonated ethanol for 1 and doubly protonated 4,4′-bipyridine for 2) in their lattices, whereas the complex 3 has one 3-amino-2-pyrazinecarboxylate and a 2,2′-bipyridine ligand. They show a high catalytic activity for the low power (10 W) solvent-free microwave assisted peroxidative oxidation of 1-phenylethanol, leading, in the presence of TEMPO, to quantitative yields of acetophenone [TOFs up to 8.1 × 103 h−1, (3)] after 1 h. Moreover, the catalysts are of easy recovery and reused, at least for four consecutive cycles, maintaining 83 % of the initial activity and concomitant rather high selectivity.

Graphical Abstract

3-Amino-2-pyrazinecarboxylic acid is used to synthesize three new iron(III) complexes which act as heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation of 1-phenylethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Chem Rev 113:6234

    Article  CAS  Google Scholar 

  2. Karabach YY, Kopylovich MN, Mahmudov KT (2014) Microwave-assisted catalytic oxidation of alcohols to carbonyl compounds. In: Pombeiro AJL (ed) Advances in organometallic chemistry and catalysis: the silver/gold jubilee international conference on organometallic chemistry celebratory book, vol 18, 233rd edn. Wiley, New York

    Google Scholar 

  3. Kopylovich MN, Ribeiro APC, Alegria ECBA, Martins NMR, Martins LMDRS, Pombeiro AJL (2015) Adv Organomet Chem. doi:10.1016/bs.adomc.2015.02.004

    Google Scholar 

  4. Sutradhar M, Martins LMDRS, Guedes da Silva MFC, Alegria ECBA, Liuc C–M, Pombeiro AJL (2014) Dalton Trans 43:3966

    Article  CAS  Google Scholar 

  5. Alexandru M, Cazacu M, Arvinte A, Shova S, Turta C, Simionescu BC, Dobrov A, Alegria ECBA, Martins LMDRS, Pombeiro AJL, Arion VB (2014) Eur J Inorg Chem 2014:120

    Article  CAS  Google Scholar 

  6. Sutradhar M, Martins LMDRS, Guedes da Silva MFC, Pombeiro AJL (2015) Coord Chem Rev. doi:10.1016/j.ccr.2015.01.020

    Google Scholar 

  7. Sabbatini A, Martins LMDRS, Mahmudov KT, Kopylovich MN, Drew MGB, Pettinari C, Pombeiro AJL (2014) Catal Commun 48:69

    Article  CAS  Google Scholar 

  8. Jlassi R, Ribeiro APC, Guedes da Silva MFC, Mahmudov KT, Kopylovich MN, Anisimova TB, Naïli H, Tiago GAO, Pombeiro AJL (2014) Eur J Inorg Chem 2014:4541

    Article  CAS  Google Scholar 

  9. Nasani R, Saha M, Mobin SM, Martins LMDRS, Pombeiro AJL, Kirillov AM, Mukhopadhyay S (2014) Dalton Trans 43:9944

    Article  CAS  Google Scholar 

  10. Mahmudov KT, Kopylovich MN, Sabbatini A, Drew MGB, Martins LMDRS, Pettinari C, Pombeiro AJL (2014) Inorg Chem 53:9946

    Article  CAS  Google Scholar 

  11. Shixaliyev NQ, Gurbanov AV, Maharramov AM, Mahmudov KT, Kopylovich MN, Martins LMDRS, Nenajdenko VG, Pombeiro AJL (2014) New J Chem 38:4807

    Article  CAS  Google Scholar 

  12. Martín SE, Garrone A (2003) Tetrahedron Lett 44:549

    Article  Google Scholar 

  13. Al-Hunaiti A, Niemi T, Sibaouih A, Pihko P, Leskelä M, Repo T (2010) Chem Commun 46:9250

    Article  CAS  Google Scholar 

  14. Lenze M, Bauer EB (2013) Chem Commun 49:5889

    Article  CAS  Google Scholar 

  15. Bhaumik C, Manoury E, Daran J-C, Sözen-Aktaş P, Demirhan F, Poli R (2014) J Organomet Chem 760:115

    Article  CAS  Google Scholar 

  16. Naziruddin AR, Zhuang C-S, Lin W-J, Hwang W-S (2014) Dalton Trans 43:5335

    Article  CAS  Google Scholar 

  17. Zhou X-T, Ji H-B, Liu S-G (2013) Tetrahedron Lett 54:3882

    Article  CAS  Google Scholar 

  18. Mueller JA, Cowell A, Chandler BD, Sigman MS (2005) J Am Chem Soc 127:14817

    Article  CAS  Google Scholar 

  19. Gryca I, Machura B, Małecki JG, Shul’pina LS, Pombeiro AJL, Shul’pin GB (2014) Dalton Trans 43:5759

    Article  CAS  Google Scholar 

  20. Morad M, Sankar M, Cao E, Nowicka E, Davies TE, Miedziak PJ, Morgan DJ, Knight DW, Bethell D, Gavriilidis A, Hutchings GJ (2014) Catal Sci Technol 4:3120

    Article  CAS  Google Scholar 

  21. Polshettiwar V, Varma RS (2008) Acc Chem Res 41:629

    Article  CAS  Google Scholar 

  22. Correa A, Mancheno OG, Bolm C (2008) Chem Soc Rev 37:1108

    Article  CAS  Google Scholar 

  23. Schröder K, Join B, Amali AJ, Junge K, Ribas X, Costas M, Beller M (2011) Angew Chem Int Ed 6:1425

    Article  Google Scholar 

  24. Kinen CO, Rossi LI, de Rossi RH (2009) J Org Chem 74:7132

    Article  CAS  Google Scholar 

  25. Bigi MA, Reed SA, White MC (2011) Nat Chem 3:216

    Article  CAS  Google Scholar 

  26. Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R (2010) Adv Synth Catal 352:113

    Article  CAS  Google Scholar 

  27. Fernandes RR, Lasri J, Guedes da Silva MFC, da Silva JAL, Fraústo da Silva JJR, Pombeiro AJL (2011) Appl Catal A Gen 402:110

    Article  CAS  Google Scholar 

  28. Martins LMDRS, de Peixoto Almeida M, Carabineiro SAC, Figueiredo JL, Pombeiro AJL (2013) Chem Catal Chem 5:3847

    CAS  Google Scholar 

  29. Sheldon RA (2008) Chem Commun 29:3352

    Article  Google Scholar 

  30. Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Figiel PJ, Karabach YY, Pombeiro AJL (2010) J Mol Catal A Chem 318:44

    Article  CAS  Google Scholar 

  31. Tayebee R, Amani V, Khavasi HR (2008) Chin J Chem 26:500

    Article  CAS  Google Scholar 

  32. Cheng X-L, Gao S, Ng SW (2009) Acta Cryst E65:m1631

    Google Scholar 

  33. Deng Z-P, Kang W, Huo L-H, Zhao H, Gao S (2010) Dalton Trans 39:6276

    Article  CAS  Google Scholar 

  34. Lemos MANDA, Pombeiro AJL (1992) J Organomet Chem 438:159

    Article  CAS  Google Scholar 

  35. Martins LMDRS, Fraústo da Silva JJR, Pombeiro AJL, Henderson RA, Evans DJ, Benetollo F, Bombieri G, Michelin RA (1999) Inorg Chim Acta 291:39

    Article  CAS  Google Scholar 

  36. Venâncio AIF, Kuznetsov ML, Guedes da Silva MFC, Martins LMDRS, Fraústo da Silva JJR, Pombeiro AJL (2002) Inorg Chem 41:6456

    Article  Google Scholar 

  37. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. Wiley, New York

    Google Scholar 

  38. Sheldrick WS, Exner R (1990) J Organomet Chem 386:375

    Article  CAS  Google Scholar 

  39. Figiel PJ, Leskelä M, Repo T (2007) Adv Synth Catal 349:1173

    Article  CAS  Google Scholar 

  40. Gamez P, Arends IWCE, Sheldon RA, Reedijk J (2004) Adv Synth Catal 346:805

    Article  CAS  Google Scholar 

  41. Ma Z, Wei L, Alegria ECBA, Martins LMDRS, Guedes da Silva MFC, Pombeiro AJL (2014) Dalton Trans 43:4048

    Article  CAS  Google Scholar 

  42. Uber JS, Vogels Y, van den Helder D, Mutikainen I, Turpeinen U, Fu WT, Roubeau O, Gamez P, Reedijk J (2007) Eur J Inorg Chem 26:4197

    Article  Google Scholar 

  43. Dronova MS, Bilyachenko AN, Yalymov AI, Kozlov YN, Shul’pina LS, Korlyukov AA, Arkhipov DE, Levitsky MM, Shubina ES, Shul’pin GB (2014) Dalton Trans 43:872

    Article  CAS  Google Scholar 

  44. Slaughter LM, Collman JP, Eberspacher TA, Brauman JI (2004) Inorg Chem 43:5198

    Article  CAS  Google Scholar 

  45. Howard JA (1973) In: Kochi JK (ed) Free radicals, vol 3. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal (Project UID/QUI/00100/2013). Authors A. Karmakar and S. Hazra express their gratitude to the FCT for post-doctoral fellowships (Ref. Nos. SFRH/BPD/76192/2011 and SFRH/BPD/78264/2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anirban Karmakar, Luísa M. D. R. S. Martins, M. Fátima C. Guedes da Silva or Armando J. L. Pombeiro.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Martins, L.M.D.R.S., Guedes da Silva, M.F.C. et al. Solvent-Free Microwave-Assisted Peroxidative Oxidation of Alcohols Catalyzed by Iron(III)-TEMPO Catalytic Systems. Catal Lett 145, 2066–2076 (2015). https://doi.org/10.1007/s10562-015-1616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1616-2

Keywords

Navigation