Skip to main content
Log in

Effect of the Support on the Oxidation of Heptane Using Vanadium Supported on Alkaline Earth Metal Hydroxyapatites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Vanadium pentoxide was supported on calcium, strontium, magnesium and barium hydroxyapatite with a loading of 15 wt% by the wet impregnation technique. The materials were characterized by X-ray diffraction (XRD), ICP–OES, BET, FTIR, scanning electron microscopy, transmission electron microscopy, temperature programmed reduction and temperature programmed desorption. From XRD and infra-red analyses, vanadium was found to exist mainly in the vanadium pentoxide phase with an additional pyrovanadate phase on the surface of the hydroxyapatites. Electron microscopy provides evidence of a homogenous distribution of the vanadium species on the hydroxyapatite. Oxidative dehydrogenation reactions carried out in a continuous flow fixed bed reactor showed that selectivity towards desired products was dependent on the metal in the hydroxyapatite and the phase composition of the oxide. Best selectivity towards heptenes was achieved using the VBa-HAp loaded catalyst. There was a marked decrease in heptenes selectivity and a significant increase in the formation of aromatics with increase in temperature. At a conversion of 16 % at 400 °C, the VBa-HAp showed a selectivity of 51 % towards heptenes, 14 % aromatics (benzene, toluene and phenol) and 15 % oxygenates (2-heptanol and 2-heptanone) for a total value added products selectivity of 80 %. For the other catalysts, a significant observation was the selectivity of 19 % towards C7 oxygenates obtained using VCa-HAp at a conversion of 16 % at 400 °C.

Graphical Abstract

Selectivity towards desired products in the oxidative dehydrogenation of n-heptane over vanadium oxide supported on alkaline earth hydroxyapatites depended on the metal in the hydroxyapatite and the phase composition of the oxide. There was a marked decrease in heptenes selectivity and significant increase in aromatics selectivity with increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balcaen V, Sack I, Olea M, Marin GB (2009) Appl Catal A 371:31

    Article  CAS  Google Scholar 

  2. Bhasin MM, McCain JH, Vora BV, Imai T, Pujadó PR (2001) Appl Catal A 221:397

    Article  CAS  Google Scholar 

  3. Sugiyama S, Shono T, Makino D, Moriga T, Hayashi H (2003) J Catal 214:8

    Article  CAS  Google Scholar 

  4. Pillay B, Mathebula MR, Friedrich HB (2011) Catal Lett 141:1297

    Article  CAS  Google Scholar 

  5. Blasco T, López Nieto JM (1997) Appl Catal A 157:117

    Article  CAS  Google Scholar 

  6. Chapman AO, Akien GR, Arrowsmith NJ, Licence P, Poliakoff M (2010) Green Chem 12:310

    Article  CAS  Google Scholar 

  7. Friedrich HB, Mahomed AS (2008) Appl Catal A 347:11

    Article  CAS  Google Scholar 

  8. Kung HH (1994) In: Oxidative dehydrogenation of light (C2 to C4) alkanes, in advances in catalysis, Pines H, Eley DD, Werner OH (eds), Academic Press, New York

  9. Mamedov EA, Cortés Corberán V (1995) Appl Catal A 127:1

    Article  CAS  Google Scholar 

  10. Cozzolino M, Tesser R, Di Serio M, D’Onofrio P, Santacesaria E (2007) Catal Today 128:191

    Article  CAS  Google Scholar 

  11. Koyano G, Okuhara T, Misono M (1995) Catal Lett 32:205

    Article  CAS  Google Scholar 

  12. Centi G (1993) Catal Today 16:1

    Article  Google Scholar 

  13. Hutchings GJ, Kiely CJ, Sananes-Schulz MT, Burrows A, Volta JC (1998) Catal Today 40:273

    Article  CAS  Google Scholar 

  14. Dias CR, Portela MF, Bond GC (1995) J Catal 157:344

    Article  CAS  Google Scholar 

  15. Dias CR, Portela MF, Bañares MA, Galán-Fereres M, López-Granados M, Peña MA, Fierro JLG (2002) Appl Catal A 224:141

    Article  CAS  Google Scholar 

  16. Govender N, Friedrich HB, Janse van Vuuren M (2004) Catal Today 97:315

    Article  CAS  Google Scholar 

  17. Centi G, Trifirò F (1988) Catal Today 3:151

    Article  CAS  Google Scholar 

  18. Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. VCH, New Jersey

    Book  Google Scholar 

  19. Cavani F, Trifirò F (1997) Appl Catal A 157:195

    Article  CAS  Google Scholar 

  20. Raja R, Lee S-O, Sanchez-Sanchez M, Sankar G, Harris KM, Johnson BG, Thomas J (2002) Top Catal 20:85

    Article  CAS  Google Scholar 

  21. Hu X, Xu T, Li C, Yang C (2011) Chem Eng J 172:410

    Article  CAS  Google Scholar 

  22. Stoylkova TY, Chanev CD, Lechert HT, Bezouhanova CP (2000) Appl Catal A 203:121

    Article  CAS  Google Scholar 

  23. Singh S, Jonnalagadda S (2008) Catal Lett 126:200

    Article  CAS  Google Scholar 

  24. Dasireddy VDBC, Singh S, Friedrich HB (2012) Appl Catal A 421–422:58

    Article  Google Scholar 

  25. Dasireddy VDBC, Singh S, Friedrich HB (2013) Appl Catal A 456:105

    Article  CAS  Google Scholar 

  26. Cheikhi N, Kacimi M, Rouimi M, Ziyad M, Liotta LF, Pantaleo G, Deganello G (2005) J Catal 232:257

    Article  CAS  Google Scholar 

  27. Elkabouss K, Kacimi M, Ziyad M, Ammar S, Bozon-Verduraz F (2004) J Catal 226:16

    Article  CAS  Google Scholar 

  28. Yasukawa A, Ueda E, Kandori K, Ishikawa T (2005) J Colloid Interface Sci 288:468

    Article  CAS  Google Scholar 

  29. Khachani M, Kacimi M, Ensuque A, Piquemal J-Y, Connan C, Bozon-Verduraz F, Ziyad M (2010) Appl Catal A 388:113

    Article  CAS  Google Scholar 

  30. Yasukawa A, Ouchi S, Kandori K, Ishikawa T (1996) J Mater Chem 6:1401

    Article  CAS  Google Scholar 

  31. Sugiyama S, Minami T, Hayashi H, Tanaka M, Shigemoto N, Moffat JB (1996) J Chem Soc Faraday Trans 92:293

    Article  CAS  Google Scholar 

  32. Sugiyama S, Minami T, Higaki T, Hayashi H, Moffat JB (1997) Ind Eng Chem Res 36:328

    Article  CAS  Google Scholar 

  33. Sugiyama S, Fujii Y, Abe K, Hayashi H, Moffat JB (1999) Energy Fuels 13:637

    Article  CAS  Google Scholar 

  34. Sugiyama S, Osaka T, Hirata Y, Sotowa K-I (2006) Appl Catal A 312:52

    Article  CAS  Google Scholar 

  35. Ishikawa T, Saito H, Kandori K (1992) J Chem Soc, Faraday Trans 88:2937

    Article  CAS  Google Scholar 

  36. Matsumura Y, Sugiyama S, Hayashi H, Shigemota N, Saitoh K, Moffat JB (1994) J Mol Catal 92:81

    Article  CAS  Google Scholar 

  37. Kim H-W, Li L-H, Koh Y-H, Knowles JC, Kim H-E (2004) J Am Ceram Soc 87:1939

    Article  CAS  Google Scholar 

  38. Majunke F, Baerns M (1994) Catal Today 20:53

    Article  CAS  Google Scholar 

  39. Parhi P, Ramanan A, Ray AR (2006) Mater Lett 60:218

    Article  CAS  Google Scholar 

  40. Chary KVR, Kishan G, Bhaskar T, Sivaraj C (1998) J Phys Chem B 102:6792

    Article  CAS  Google Scholar 

  41. O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Acta Biomater 4:1455

    Article  Google Scholar 

  42. Sugiyama S, Osaka T, Ueno Y, Sotowa K-I (2008) J Jpn Petrol Inst 51:50

    Article  CAS  Google Scholar 

  43. Kamiya Y, Nishikawa E, Satsuma A, Yoshimune M, Okuhara T (2002) Micropor Mesopor Mat 54:277

    Article  CAS  Google Scholar 

  44. Bhattacharyya K, Varma S, Tripathi AK, Bharadwaj SR, Tyagi AK (2008) J Phys Chem C 112:19102

    Article  CAS  Google Scholar 

  45. Yang Y, Lim S, Wang C, Harding D, Haller G (2004) Micropor Mesopor Mat 67:245

    Article  CAS  Google Scholar 

  46. Bond GC, Zurita JP, Flamerz S, Gellings PJ, Bosch H, Van Ommen JG, Kip BJ (1986) Appl Catal 22:361

    Article  CAS  Google Scholar 

  47. Dias CR, Portela MF, Bond GC (1995) J Catal 157:353

    Article  CAS  Google Scholar 

  48. Bosch H, Kip BJ, van Ommen JG, Gellings PJ (1984) J Chem Soc, Faraday Trans 80:2479

    Article  CAS  Google Scholar 

  49. Wachs IE, Weckhuysen BM (1997) Appl Catal A 157:67

    Article  CAS  Google Scholar 

  50. Matralis HK, Papadopoulou C, Kordulis C, Aguilar Elguezabal A, Cortes Corberan V (1995) Appl Catal A 126:365

    Article  CAS  Google Scholar 

  51. Balderas-Tapia L, Wang JA, Hernández-Pérez I, Aguilar-Ríos GG, Schacht P (2004) Mater Lett 58:3034

    Article  CAS  Google Scholar 

  52. Balderas-Tapia L, Hernández-Pérez I, Schacht P, Córdova IR, Aguilar-Ríos GG (2005) Catal Today 107–108:371

    Article  Google Scholar 

  53. Chary KVR, Kishan G, Kumar CP, Sagar GV (2003) Appl Catal A 246:335

    Article  CAS  Google Scholar 

  54. Khader MM (1995) J Mol Catal A: Chem 104:87

    Article  CAS  Google Scholar 

  55. Mars P, van Krevelen DW (1954) Chem Eng Sci 3(Supplement 1):41

    Article  CAS  Google Scholar 

  56. Pradhan S, Bartley JK, Bethell D, Carley AF, Conte M, Golunski S, House MP, Jenkins RL, Lloyd R, Hutchings GJ (2012) Nat Chem 4:134

    Article  CAS  Google Scholar 

  57. Dasireddy VDBC, Khan FB, Singh S, Friedrich HB (2014) Catal Lett 144:590

    Article  CAS  Google Scholar 

  58. Albonetti S, Cavani F, TrifirÒ F (1996) Catal Rev 38:413

    Article  CAS  Google Scholar 

  59. Morrison RT, Boyd RN (1992) Organic chemistry. Prentice-Hall, New Jersey

    Google Scholar 

  60. Hodnett BK (2000) Heterogeneous catalytic oxidation: fundamental and technological aspects of the selective and total oxidation of organic compounds. Wiley, New Jersey

    Google Scholar 

  61. Elkhalifa EA, Friedrich HB (2010) Appl Catal A 373:122

    Article  CAS  Google Scholar 

  62. Elkhalifa EA, Friedrich HB (2011) Catal Lett 141:554

    Article  CAS  Google Scholar 

  63. Elkhalifa EA, Friedrich HB (2014) J Mol Catal A: Chem 392:22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NRF, THRIP (TP1208035643) and the EM Unit, UKZN for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger B. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasireddy, V.D.B.C., Singh, S. & Friedrich, H.B. Effect of the Support on the Oxidation of Heptane Using Vanadium Supported on Alkaline Earth Metal Hydroxyapatites. Catal Lett 145, 668–678 (2015). https://doi.org/10.1007/s10562-014-1424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1424-0

Keywords

Navigation