Skip to main content
Log in

Effect of Reduction Treatment on Structural Properties of TiO2 Supported Pt Nanoparticles and Their Catalytic Activity for Benzene Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of highly active Pt–TiO2 catalysts have been prepared by impregnation methods via different reduction processes and used for catalytic decomposition of benzene. The oxidized and reduced Pt–TiO2 catalysts exhibit apparent differences in physical/chemical features (e.g. particle size, chemical state, and electronic property of Pt nanoparticles, and surface oxygen) and catalytic activities for benzene oxidation. Nearly 100 % benzene conversion is achieved on Pt–TiO2 catalysts obtained by the sodium citrate (C6H5Na3O7·2H2O, Na3Ct) reduction at approximate 160 °C. Metallic Pt nanoparticles have strong capacity for oxygen activation, and the negative charges and rich chemisorbed oxygen on the surface of metallic Pt nanoparticles are probably responsible for their high catalytic activities for benzene oxidation.

Graphical Abstract

1 wt% Pt-TiO2 catalysts have been prepared by impregnation methods via different reduction processes and used for catalytic decomposition of benzene. The oxidized and reduced catalysts exhibit apparent differences in physical/chemical features and catalytic activities for benzene oxidation. Metallic Pt nanoparticles have strong capacity for oxygen activation, and the negative charges and rich chemisorbed oxygen on the surface of metallic Pt nanoparticles are probably responsible for their high catalytic activities for benzene oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armor JN (1991) Appl Catal 78:141–173

    Article  CAS  Google Scholar 

  2. Lan Q, Zhang LP, Li GL, Vermeulen R, Weinberg RS, Dosemeci M, Rappaport SM, Shen M, Alter BP, Wu YJ, Kopp W, Waidyanatha S, Rabkin C, Guo WH, Chanock S, Hayes RB, Linet M, Kim S, Yin SN, Rothman N, Smith MT (2004) Science 306:1774–1776

    Article  CAS  Google Scholar 

  3. Armor JN (1992) Appl Catal B 1:221–256

    Article  CAS  Google Scholar 

  4. Spivey JJ (1987) Ind Eng Chem Res 26:2165–2180

    Article  CAS  Google Scholar 

  5. Ye Q, Huo FF, Wang HP, Wang J, Wang D (2013) Chem J Chinese U 34:1187–1194

    CAS  Google Scholar 

  6. Vassileva M, Andreev A, Dancheva S (1991) Appl Catal 69:221–234

    Article  CAS  Google Scholar 

  7. Park JH, Kim JM, Jurng J, Bae GN, Park SH, Kim SC, Jeon JK, Park YK (2013) J Nanosci Nanotechnol 13:423–426

    Article  CAS  Google Scholar 

  8. Park JH, Jurng J, Bae GN, Park SH, Jeon JK, Kim SC, Kim JM, Park YK (2012) J Nanosci Nanotechnol 12:5942–5946

    Article  CAS  Google Scholar 

  9. Garcia T, Solsona B, Cazorla-Amorós D, Linares-Solano Á, Taylor SH (2006) Appl Catal B 62:66–76

    Article  CAS  Google Scholar 

  10. Giraudon J-M, Elhachimi A, Wyrwalski F, Siffert S, Aboukais A, Lamonier J-F, Leclercq G (2007) Appl Catal B 75:157–166

    Article  CAS  Google Scholar 

  11. Wu HJ, Wang LD, Zhang JQ, Shen ZY, Zhao JH (2011) Catal Commun 12:859–865

    Article  CAS  Google Scholar 

  12. Garetto TF, Apesteguía CR (2001) Applied Catalysis B 32:83–94

    Article  CAS  Google Scholar 

  13. Tidahy H, Siffert S, Wyrwalski F, Lamonier J-F, Aboukaïs A (2007) Catal Today 119:317–320

    Article  CAS  Google Scholar 

  14. Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H (2012) Angew Chem Int Ed Engl 51:9628–9632

    Article  CAS  Google Scholar 

  15. Zhang CB, He H, Tanaka K (2005) Catal Commun 6:211–214

    Article  CAS  Google Scholar 

  16. Zhang CB, He H, Tanaka K (2006) Appl Catal B-Environ 65:37–43

    Article  CAS  Google Scholar 

  17. Kim HS, Kim TW, Koh HL, Lee SH, Min BR (2005) Appl Catal a-Gen 280:125–131

    Article  CAS  Google Scholar 

  18. Yoshida H, Yazawa Y, Hattori T (2003) Catal Today 87:19–28

    Article  CAS  Google Scholar 

  19. Thiele E (1939) Ind Eng Chem 31:916–920

    Article  CAS  Google Scholar 

  20. Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG (2004) Macromolecules 37:1787–1792

    Article  CAS  Google Scholar 

  21. Huang H, Leung DYC, Ye D (2011) J Mater Chem 21:9647

    Article  CAS  Google Scholar 

  22. Huang HB, Leung DYC (2011) J Catal 280:60–67

    Article  CAS  Google Scholar 

  23. Huang H, Leung DYC (2011) Acs Catalysis 1:348–354

    Article  CAS  Google Scholar 

  24. Shim WG, Lee JW, Kim SC (2008) Appl Catal B 84:133–141

    Article  CAS  Google Scholar 

  25. Humenik M, Kingery WD (1954) J Am Ceram Soc 37:18–23

    Article  CAS  Google Scholar 

  26. Nagai Y, Shinjoh H, Yokota K (2002) Appl Catal B 39:149–155

    Article  CAS  Google Scholar 

  27. Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X (1998) J Catal 178:214–225

    Article  CAS  Google Scholar 

  28. Kim K, Winograd N, Davis R (1971) J Am Chem Soc 93:6296–6297

    Article  CAS  Google Scholar 

  29. Liu Y, Wang X, Yang F, Yang X (2008) Micropor Mesopor Mat 114:431–439

    Article  CAS  Google Scholar 

  30. Liang D, Gao J, Sun H, Chen P, Hou Z, Zheng X (2011) Appl Catal B 106:423–432

    Article  CAS  Google Scholar 

  31. Liang D, Gao J, Wang J, Chen P, Hou Z, Zheng X (2009) Catal Commun 10:1586–1590

    Article  CAS  Google Scholar 

  32. Aramendía MA, Colmenares JC, Marinas A, Marinas JM, Moreno JM, Navío JA, Urbano FJ (2007) Catal Today 128:235–244

    Article  Google Scholar 

  33. Hutchings GJ (2008) Dalton Trans 5523–5536

  34. Hiehata K, Sasahara A, Onishi H (2007) Nanotechnology 18:084007

    Article  Google Scholar 

  35. Fu P, Zhang P (2010) Appl Catal B 96:176–184

    Article  CAS  Google Scholar 

  36. Lopez N, Janssens T, Clausen B, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232–235

    Article  CAS  Google Scholar 

  37. Hvolbæk B, Janssens TV, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Nano Today 2:14–18

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the Instrument Developing Project of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Yunfa Chen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4,261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Yang, K., Liu, G. et al. Effect of Reduction Treatment on Structural Properties of TiO2 Supported Pt Nanoparticles and Their Catalytic Activity for Benzene Oxidation. Catal Lett 144, 1080–1087 (2014). https://doi.org/10.1007/s10562-014-1245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1245-1

Keywords

Navigation