Skip to main content
Log in

Reactivity and Selectivity in the Au/Pd(111) Alloy-Catalyzed Vinyl Acetate Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The rates of reaction of acetate species adsorbed on a range of Au/Pd(111) alloys with gas-phase ethylene to form vinyl acetate monomer (VAM) were explored by monitoring the time dependence of the adsorbate coverages using infrared spectroscopy. It was found that the acetate species react directly to form VAM since the decrease in the coverage of acetate species correlates directly with the rate of VAM formation. The VAM was retained on the surface, in accord with the stronger binding of VAM on Au/Pd(111) alloys than on the metal as found in previous surface science studies. In addition, the formation of ethylidyne species from ethylene, previously found on Pd(111), was suppressed on alloys for gold coverages ≥0.37 monolayers. A substantial increase in the rate of VAM formation was found with increasing gold coverage in the alloy. In addition to the strengthening of the binding of VAM on the alloy, the binding of the reactants decreased with increasing gold content in the alloy, leading to an overall increase in the exothermicity of the reaction. This is expected to lead to a decrease in reaction activation energies, rationalizing the observed increase in reactions rate. However, it has also been found previously that the reactant coverages influence the elementary step activation energies on Pd(111). Increasing the gold coverage in the alloy also decreases the coverages of the reactants and may therefore also influence the VAM formation activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Colling PM, Johnson LR, Nicolau I (1996) Palladium-gold catalyst for vinyl acetate production. In: U.S.P. Office (ed), Hoechst Celanese Corporation, United States

  2. Horning L, Wunder F, Quadflieg T (1967) Process for preparing vinyl acetates. In: F.H.A.V.M.L. Bruning (ed), United States

  3. Chen M, Kumar D, Yi C-W, Goodman DW (2005) Science 310:291–293

    Article  CAS  Google Scholar 

  4. Han YF, Kumar D, Goodman DW (2005) J Catal 230:353–358

    Article  CAS  Google Scholar 

  5. Stacchiola D, Calaza F, Burkholder L, Tysoe WT (2004) J Am Chem Soc 126:15384–15385

    Article  CAS  Google Scholar 

  6. Stacchiola D, Calaza F, Burkholder L, Schwabacher AW, Neurock M, Tysoe WT (2005) Angew Chem Int Edit 44:4572–4574

    Google Scholar 

  7. Samanos B, Boutry P, Montarnal R (1971) J Catal 23:19–30

    Article  CAS  Google Scholar 

  8. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2010) J Am Chem Soc 132:2202–2207

    Article  CAS  Google Scholar 

  9. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2010) Catal Lett 138:135–142

    Article  CAS  Google Scholar 

  10. Calaza F, Stacchiola D, Neurock M, Tysoe WT (2005) Surf Sci 598:263–275

    Article  CAS  Google Scholar 

  11. Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts, and applications. Wiley, New York

    Google Scholar 

  12. Dowden DA, Reynolds PW (1950) Discuss Faraday Soc 8:184–190

    Article  Google Scholar 

  13. Schwab G-M (1950) Discuss Faraday Soc 8:166–171

    Article  Google Scholar 

  14. Sinfelt JH, Carter JL, Yates DJC (1972) J Catal 24:283–296

    Article  CAS  Google Scholar 

  15. Woodruff DP (2002) Surface alloys and alloy surfaces. Elsevier, Amsterdam

    Google Scholar 

  16. Rodriguez J (1996) Surf Sci Rep 24:223–287

    Article  CAS  Google Scholar 

  17. Gao F, Goodman DW (2012) Chem Soc Rev 41:8009–8020

    Article  CAS  Google Scholar 

  18. Li Z, Furlong O, Calaza F, Burkholder L, Poon HC, Saldin D, Tysoe WT (2008) Surf Sci 602:1084–1091

    Article  CAS  Google Scholar 

  19. Li Z, Gao F, Wang Y, Calaza F, Burkholder L, Tysoe WT (2007) Surf Sci 601:1898–1908

    Article  CAS  Google Scholar 

  20. Boscoboinik JA, Plaisance C, Neurock M, Tysoe WT (2008) Phys Rev B 77

  21. Calaza F, Gao F, Li Z, Tysoe WT (2007) Surf Sci 601:714–722

    Article  CAS  Google Scholar 

  22. Yuan D, Gong X, Wu R (2008) J Phys Chem C 112:1539–1543

    Article  CAS  Google Scholar 

  23. Yuan D, Gong X, Wu R (2007) Phys Rev B 75:233401

    Article  Google Scholar 

  24. Calaza F, Li Z, Gao F, Boscoboinik J, Tysoe WT (2008) Surf Sci 602:3523–3530

    Article  CAS  Google Scholar 

  25. Bowker M, Morgan C, Couves J (2004) Surf Sci 555:145–156

    Article  CAS  Google Scholar 

  26. Bowker M, Morgan C, Zhdanov VP (2007) Phys Chem Chem Phys 9

  27. Calaza F, Tysoe WT, Stacchiola DJ (2011) Adsorpt Sci Technol 29:603–611

    Article  CAS  Google Scholar 

  28. Li Z, Gao F, Tysoe WT (2008) Surf Sci 602:416–423

    Article  CAS  Google Scholar 

  29. Li Z, Calaza F, Gao F, Tysoe WT (2007) Surf Sci 601:1351–1357

    Article  CAS  Google Scholar 

  30. Boscoboinik JA, Calaza FC, Garvey MT, Tysoe WT (2010) J Phys Chem C 114:1875–1880

    Article  CAS  Google Scholar 

  31. Baddeley CJ, Tikhov M, Hardacre C, Lomas JR, Lambert RM (1996) J Phys Chem 100:2189–2194

    Article  CAS  Google Scholar 

  32. Ormerod RM, Baddeley CJ, Lambert RM (1991) Surf Sci 259:L709–L713

    Article  CAS  Google Scholar 

  33. James J, Saldin DK, Zheng T, Tysoe WT, Sholl DS (2005) Catal Today 105:74–77

    Article  CAS  Google Scholar 

  34. Koestner RJ, Van Hove MA, Somorjai GA (1983) J Phys Chem 87:203–213

    Article  CAS  Google Scholar 

  35. Kesmodel LL, Dubois LH, Somorjai GA (1978) Chem Phys Lett 56:267–271

    Article  CAS  Google Scholar 

  36. Cremer PS, Su X, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949

    Article  CAS  Google Scholar 

  37. Zaera F, Somorjai GA (1984) J Am Chem Soc 106:2288–2293

    Article  CAS  Google Scholar 

  38. Stacchiola D, Tysoe WT (2009) J Phys Chem C 113:8000–8001

    Article  CAS  Google Scholar 

  39. Moskaleva LV, Chen Z-X, Aleksandrov HA, Mohammed AB, Sun Q, Rösch N (2009) J Phys Chem C 113:2512–2520

    Article  CAS  Google Scholar 

  40. Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435–446

    Article  Google Scholar 

  41. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217

    Article  CAS  Google Scholar 

  42. Loffreda D, Delbecq F, Vigné F, Sautet P (2009) Angew Chem Int Ed 48:8978–8980

    Article  CAS  Google Scholar 

  43. Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) J Catal 197:229–231

    Article  CAS  Google Scholar 

  44. van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH, Weinheim

  45. van Santen RA, Neurock M, Shetty SG (2009) Chem Rev 110:2005–2048

  46. Rivalta I, Mazzone G, Russo N, Sicilia E (2009) J Chem Theory Comput 5:1350–1360

    Article  CAS  Google Scholar 

  47. García-Mota MN, López NR (2008) J Am Chem Soc 130:14406–14407

    Article  Google Scholar 

  48. G. Mazzone, I. Rivalta, N. Russo, E. Sicilia, Chem Commun, 0 (2009) 1852-1854

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the National Science Foundation, under Grant number CHE-1109377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calaza, F., Li, Z., Garvey, M. et al. Reactivity and Selectivity in the Au/Pd(111) Alloy-Catalyzed Vinyl Acetate Synthesis. Catal Lett 143, 756–762 (2013). https://doi.org/10.1007/s10562-013-1042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1042-2

Keywords

Navigation