Skip to main content
Log in

Structural and Kinetic Study of the Reduction of CuO–CeO2/Al2O3 by Time-Resolved X-ray Diffraction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The crystallographic structure of (11 wt.%)CuO–(6 wt.%)CeO2/γ-Al2O3 has been studied and compared with (11 wt.%)CuO/γ-Al2O3 under reducing conditions, using time-resolved in situ X-ray diffraction in the temperature range 25–800 °C. In CuO–CeO2/Al2O3, H2-TPR reduces the CuO phase to Cu, while in C3H8-TPR reduction follows a two-step pathway via Cu2O. A thermal treatment in He also induces reduction for CuO, albeit at higher temperature. In addition to CuO reduction, the CeO2 promoter in CuO–CeO2/Al2O3 is also partially reduced, without crystallographic transition, regardless of the atmosphere and at similar temperature where reduction of CuO occurs. Supported CuO as in CuO–CeO2/Al2O3 or CuO/Al2O3, is more readily reduced by thermal treatment in He than unsupported CuO and Cu2O. Moreover, the addition of CeO2 to the CuO–CeO2/Al2O3 catalyst allows for enhanced reducibility of CuO, compared to CuO/Al2O3. The CuO phase in CuO–CeO2/Al2O3 is reduced to Cu2O and partly to Cu at 700 °C and mainly to Cu at 800 °C in He flow. The thermal reduction of CuO–CeO2/Al2O3 requires an apparent activation energy of 216 kJ/mol.

Graphical Abstract

An isothermal reduction treatment at 800 oC in He reduces CuO–CeO2/Al2O3, as demonstrated by time-resolved in situ X-ray diffraction. Supported CuO are more easily reduced by thermal treatment compared to unsupported CuO and Cu2O. The CuO phase in CuO–CeO2/Al2O3 is reduced to Cu2O and partly to Cu at 700 °C and mainly to Cu at 800 °C in He flow (see figure)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Armor JN (1992) Appl Catal B 1:221–256

    Article  CAS  Google Scholar 

  2. Everaert K, Baeyens J (2004) J Hazard Mater 109:113–139

    Article  CAS  Google Scholar 

  3. Christopher JGI, Heyes J, Hilary J, Moss JARL (1982) J Chem Technol Biotechnol 32:1025–1033

    Google Scholar 

  4. Larsson P-O, Andersson A (1998) J Catal 179:72–89

    Article  CAS  Google Scholar 

  5. Wang C-H, Lin S-S, Chen C-L, Weng H-S (2006) Chemosphere 64:503–509

    Article  CAS  Google Scholar 

  6. Heynderickx PM, Thybaut JW, Poelman H, Poelman D, Marin GB (2010) J Catal 272:109–120

    Article  CAS  Google Scholar 

  7. Alexopoulos K, Anilkumar M, Reyniers M-F, Poelman H, Cristol S, Balcaen V, Heynderickx PM, Poelman D, Marin GB (2010) Appl Catal B 97:381–388

    Article  CAS  Google Scholar 

  8. Huang T-J, Tsai D-H (2003) Catal Lett 87:173–178

    Article  CAS  Google Scholar 

  9. Doornkamp C, Ponec V (2000) J Mol Catal A 162:19–32

    Article  CAS  Google Scholar 

  10. Grzybowska-Świerkosz B (2000) Top Catal 11–12:23–42

    Article  Google Scholar 

  11. Busca G, Daturi M, Finocchio E, Lorenzelli V, Ramis G, Willey RJ (1997) Catal Today 33:239–249

    Article  CAS  Google Scholar 

  12. Balcaen V, Roelant R, Poelman H, Poelman D, Marin GB (2010) Catal Today 157:49–54

    Article  CAS  Google Scholar 

  13. Rubio O, Herguido J, Menéndez M (2003) Chem Eng Sci 58:4619–4627

    Article  CAS  Google Scholar 

  14. Haber J, Turek W (2000) J Catal 190:320–326

    Article  CAS  Google Scholar 

  15. Liu D-J, Robota HJ (1993) Catal Lett 21:291–301

    Article  CAS  Google Scholar 

  16. Amano F, Tanaka T, Funabiki T (2004) J Mol Catal A 221:89–95

    Article  CAS  Google Scholar 

  17. Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S (1991) J Phys Chem 95:3727–3730

    Article  CAS  Google Scholar 

  18. Llabres i Xamena FX, Fisicaro P, Berlier G, Zecchina A, Palomino GT, Prestipino C, Bordiga S, Giamello E, Lamberti C (2003) J Phys Chem. B 107: 7036–7044

    Google Scholar 

  19. Menon U, Galvita VV, Marin GB J Catal. 283:1–9

  20. http://www.numpy.org

  21. http://www.scipy.org

  22. Wang X, Hanson JC, Frenkel AI, Kim J-Y, Rodriguez JA (2004) J Phys Chem B 108:13667–13673

    Article  CAS  Google Scholar 

  23. Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL (2003) J Am Chem Soc 125:10684–10692

    Article  CAS  Google Scholar 

  24. Kim JY, Hanson JC, Frenkel AI, Lee PL, Rodriguez JA (2004) J Phys Condens Matter 16:S3479–S3484

    Article  CAS  Google Scholar 

  25. Yamaguchi A, Shido T, Inada Y, Kogure T, Asakura K, Nomura M, Iwasawa Y (2001) Bull Chem Soc Jpn 74:801–808

    Article  CAS  Google Scholar 

  26. Reitz TL, Lee PL, Czaplewski KF, Lang JC, Popp KE, Kung HH (2001) J Catal 199:193–201

    Article  CAS  Google Scholar 

  27. Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Appl Cat A 293:64–70

    Article  CAS  Google Scholar 

  28. Smith ML, Campos A, Spivey JJ (2012) Catal Today 182:60–66

    Google Scholar 

  29. Silversmit G, Poelman H, Balcaen V, Heynderickx PM, Olea M, Nikitenko S, Bras W, Smet PF, Poelman D, De Gryse R, Reniers MFO, Marin GB (2009) J Phys Chem Solids 70:1274–1284

    Article  CAS  Google Scholar 

  30. Aneggi E, Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A (2006) J Alloys Compd 408–412:1096–1102

    Article  Google Scholar 

  31. Martinez-Arias A, Gamarra D, Fernandez-Garcia M, Wang XQ, Hanson JC, Rodriguez JA (2006) J Catal 240:1–7

    Article  CAS  Google Scholar 

  32. Cao Y, Casenas B, Pan W-P (2006) Energy Fuels 20:1845–1854

    Article  CAS  Google Scholar 

  33. Malinin GV, Tolmachev YM (1975) Russ Chem Rev 44:392

    Article  Google Scholar 

  34. Kirsch PD, Ekerdt JG (2001) J Appl Phys 90:4256

    Article  CAS  Google Scholar 

  35. Bera P, Aruna ST, Patil KC, Hegde MS (1999) J Catal 186:36–44

    Article  CAS  Google Scholar 

  36. Shapovalov V, Metiu H (2007) J Catal 245:205–214

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ‘Long Term Structural Methusalem Funding by the Flemish Government’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Galvita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galvita, V.V., Poelman, H., Rampelberg, G. et al. Structural and Kinetic Study of the Reduction of CuO–CeO2/Al2O3 by Time-Resolved X-ray Diffraction. Catal Lett 142, 959–968 (2012). https://doi.org/10.1007/s10562-012-0859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0859-4

Keywords

Navigation