Skip to main content
Log in

Modeling of Temperature-Programmed Desorption (TPD) Flow Experiments from Cu/ZnO/Al2O3 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Different procedures to extract the kinetics of hydrogen desorption from a Cu/ZnO/Al2O3 catalyst for methanol synthesis were studied by performing temperature-programmed desorption experiments under atmospheric pressure. The four methods include (i) heating rate variation, (ii) analysis using a fixed pre-exponential factor, (iii) lineshape analysis and (iv) full analysis. Before extracting the parameters, transport limitations could be excluded for all experiments and a criterion for inner particle mass transfer limitations could be extended in the case of activated re-adsorption. All methods could be valid in the whole range of experiments, with only one exception for the lineshape analysis at full coverage of hydrogen. However, each method requires different input to extract physically meaningful parameters. The best modeling results were obtained when repulsive interactions of adsorbed species were accounted for. This led to a k des = 3.75·1010 s−1·exp (−(75 kJ·mol−1−5.5 kJ·mol−1·Θ 2.6H )/RT) in good agreement with the literature. Moreover, it was found that there is no difference, when extracting the kinetic parameters from a fresh or deactivated catalyst at full coverage.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A ads :

Arrhenius factor of adsorption (Pa s)−1

A des :

Arrhenius factor of desorption (s−1)

\( c_{{{\text{H}}_{ 2} }} \) :

Concentration of hydrogen (mol m−3)

D ax :

Axial dispersion coefficient (m2 s−1)

D e :

Effective diffusion coefficient (m2 s−1)

E ads :

Activation energy of adsorption (kJ mol−1)

E des :

Activation energy of desorption (kJ mol−1)

K :

Factor of coverage-dependent activation energy (kJ mol−1)

k ads :

Reaction rate constant of adsorption (Pa s)−1

k des :

Reaction rate constant of desorption (s−1)

L :

Length of reactor bed (m)

n :

Power of coverage-dependent activation energy (–)

\( N_{{{\text{H}}_{ 2} ,{\text{sat}}}} \) :

Saturation coverage of hydrogen (mol kg−1)

\( P_{{{\text{H}}_{ 2} }} \) :

Partial pressure of hydrogen (Pa)

Q :

Flow rate (Nml min−1)

R :

Ideal gas constant (J mol−1K−1)

r p :

Radius of catalyst particle (m)

S critical :

Value for criterion (–)

T :

Temperature (K)

t :

Time (s)

T max :

Temperature at peak maximum (K)

u :

Superficial velocity (m s−1)

w cat :

Catalyst weight (g)

X ref :

Reference value (mol–%)

x :

Dimensionless reactor coordinate (–)

z :

Dimensionless particle coordinate (–)

β :

Heating rate (K min−1)

ε b :

Bed porosity (–)

ε p :

Particle porosity (–)

γ :

Source term (mol m−3 s−1)

ΘH :

Degree of coverage (of hydrogen) (–)

ρ p :

Particle density (kg m−3)

τ :

Residence time (s)

References

  1. Niemantsverdriet JW (2007) Spectroscopy in catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. ACS Professional Reference Book, Washington DC

    Google Scholar 

  3. Hinrichsen O (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  4. de Jong AM, Niemantsverdriet JW (1990) Surf Sci 233:355

    Article  Google Scholar 

  5. Falconer JL, Schwarz JA (1983) Catal Rev Sci Eng 25:141

    Article  CAS  Google Scholar 

  6. Miller JB, Siddique HR, Gates SM, Russell JN Jr, Yates JT Jr, Tully JC, Cardillo MJ (1987) Chem Phys 87:6725

    CAS  Google Scholar 

  7. Anger G, Winkler A, Rendulic KD (1989) Surf Sci 220:1

    Article  CAS  Google Scholar 

  8. Genger T, Hinrichsen O, Muhler M (1999) Catal Lett 59:137

    Article  CAS  Google Scholar 

  9. Muhler M, Nielsen LP, Törnqvist E, Clausen BS, Topsøe H (1992) Catal Lett 14:241

    Article  CAS  Google Scholar 

  10. Tabatabaei J, Sakakini BH, Watson MJ, Waugh KC (1999) Catal Lett 59:143

    Article  CAS  Google Scholar 

  11. Wilmer H, Genger T, Hinrichsen O (2003) J Catal 215:188

    Article  CAS  Google Scholar 

  12. Wilmer H, Hinrichsen O (2002) Catal Lett 82:117

    Article  CAS  Google Scholar 

  13. Xia X, Strunk J, Litvinov S, Muhler M (2007) J Phys Chem C 111:6000

    Article  CAS  Google Scholar 

  14. Chinchen GC, Waugh KC, Whan DA (1986) Appl Catal 25:101

    Article  CAS  Google Scholar 

  15. Pan WX, Cao R, Roberts DL, Griffin GL (1988) J Catal 114:440

    Article  CAS  Google Scholar 

  16. Campbell JM, Campbell CT (1991) Surf Sci 259:1

    Article  CAS  Google Scholar 

  17. Hayden BE, Lackey D, Schott J (1990) Surf Sci 239:119

    Article  CAS  Google Scholar 

  18. Hayden BE, Lamont CLA (1989) Chem Phys Lett 160:331

    Article  CAS  Google Scholar 

  19. Hayden BE, Lamont CLA (1989) Phys Rev Lett 63:1823

    Article  CAS  Google Scholar 

  20. Chinchen GC, Hay CM, Vanderwell HD, Waugh KC (1987) J Catal 103:79

    Article  CAS  Google Scholar 

  21. Scholten JJF, Konvalinka JA (1969) Trans Faraday Soc 65:2465

    Google Scholar 

  22. Kanervo JM, Keskitalo TJ, Slioor RI, Krause AOI (2006) J Catal 238:382

    Article  CAS  Google Scholar 

  23. Genger T (2000) Mikrokinetische Untersuchungen zur Methanol-Synthese an Cu-Trägerkatalysatoren. PhD thesis, Ruhr-Universität Bochum

  24. Löwe A (2001) Chemische Reaktionstechnik. Wiley-VCH, Weinheim

    Google Scholar 

  25. Hinrichsen O, Rosowski F, Muhler M, Ertl G (1997) Stud Surf Sci Catal 109:389

    Article  CAS  Google Scholar 

  26. Balkenende AR, Geus JW, Kock AJHM, van der Pas RJ (1989) J Catal 115:365

    Article  CAS  Google Scholar 

  27. Demmin RA, Gorte RJ (1984) J Catal 90:32

    Article  CAS  Google Scholar 

  28. Forzatti P, Tronconi E, Lietti L (1988) In: Cheremisinoff NP (ed) Handbook of heat and mass transfer, vol 3. Gulf Publishing Co., Houston

    Google Scholar 

  29. Rieck JS, Bell AT (1984) J Catal 85:143

    Article  CAS  Google Scholar 

  30. Emig G, Klemm E (2005) Technische Chemie. Springer, Berlin

    Google Scholar 

  31. Redhead PA (1962) Vacuum 12:203

    Article  CAS  Google Scholar 

  32. Roberts DL, Griffin GL (1988) J Catal 110:117

    Article  CAS  Google Scholar 

  33. Rasmussen PB, Taylor PA, Chorkendorff I (1992) Surf Sci 269(270):352

    Article  Google Scholar 

  34. Taylor PA, Rasmussen PB, Ovesen CV, Stoltze P, Chorkendorff I (1992) Surf Sci 261:191

    Article  CAS  Google Scholar 

  35. Ovesen CV, Stoltze P, Nørskov JK, Campbell CT (1992) J Catal 134:445

    Article  CAS  Google Scholar 

  36. Rasmussen PB, Holmblad PM, Askgaard T, Ovesen CV, Stoltze P, Nørskov JK, Chorkendorff I (1994) Catal Lett 26:373

    Article  CAS  Google Scholar 

  37. Askgaard TS, Nørskov JK, Ovesen CV, Stoltze P (1995) J Catal 156:229

    Article  CAS  Google Scholar 

  38. Ovesen CV, Clausen BS, Hammershøi BS, Steffensen G, Askgaard T, Chorkendorff I, Nørskov JK, Rasmussen PB, Stoltze P, Taylor P (1996) J Catal 158:170

    Article  CAS  Google Scholar 

  39. Ovesen CV, Clausen BS, Schiøtz J, Stoltze P, Topsøe H, Nørskov JK (1997) J Catal 168:133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fruitful discussions with Martin Muhler are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hinrichsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, M., Fendt, J., Wilmer, H. et al. Modeling of Temperature-Programmed Desorption (TPD) Flow Experiments from Cu/ZnO/Al2O3 Catalysts. Catal Lett 142, 547–556 (2012). https://doi.org/10.1007/s10562-012-0807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0807-3

Keywords

Navigation