Skip to main content
Log in

Low-Temperature Water–Gas Shift: Doping Ceria Improves Reducibility and Mobility of O-Bound Species and Catalyst Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of platinum loaded catalysts supported on cation (Me)-doped cerium dioxide (Me = Ba, La, Y, Hf and Zn) was prepared by co-precipitation of the Me-nitrates and impregnation of a Pt precursor. Low temperature water–gas shift activity depends on the nature of dopant employed, varying in the order of Ba > Y > Hf > La > undoped ceria > Zn. TPR-XANES measurements with flowing hydrogen reveal that adding dopants to ceria facilitate ceria reduction and increases the extents of both surface shell and bulk reduction of ceria. Experimental results confirm past theoretical models that dopants enhance both O-mobility and reducibility of ceria. DRIFTS measurements of the transient decomposition of formates in steam suggest that formate half-life follows the trend Zn > undoped ceria > La > Hf > Y > Ba, indicating that the formate decomposition rate is enhanced by the addition of most of the dopants tested. Taken together, the results suggest that dopant addition improves the WGS rate by increasing the O-mobility of O-bound associated intermediates. Therefore, less Pt and Ce, which are expensive, is required to achieve comparable levels of activity.

Graphical Abstract

TPR-XANES profiles of 0.5% Pt/ceria catalyst with and without Y-dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, Chichester

    Google Scholar 

  2. Song C (2002) Catal. Today 77:17–49

    Article  CAS  Google Scholar 

  3. Koci P, Schejbal M, Trdlicka J, Gregor T, Kubicek M, Marek M (2007) Catal. Today 119:64–72

    Article  CAS  Google Scholar 

  4. Koci P, Plat F, Stepanek J, Bartova S, Marek M, Kubicek M, Schmeisser V, Chatterjee D, Weibel M (2009) Catal. Today 147:S257–S264

    Article  CAS  Google Scholar 

  5. Mannila P, Salmi T, Haario H, Luoma M, Harkonen M, Sohlo J (1996) Appl. Catal. B 7:179–198

    Article  CAS  Google Scholar 

  6. Whittington B, Jiang C, Trimm D (1995) Catal. Today 26:41–45

    Article  CAS  Google Scholar 

  7. Phatak AA, Koryabkina N, Rai S, Ratts JL, Ruettinger W, Farrauto RJ, Blau GE, Delgass WN, Ribeiro FH (2007) Catal. Today 123:224

    Article  CAS  Google Scholar 

  8. Azzam KG, Babich IV, Seshan K, Lefferts L (2007) J. Catal. 251:163

    Article  CAS  Google Scholar 

  9. Wang X, Gorte RJ, Wagner JP (2002) J. Catal. 212:225

    Article  CAS  Google Scholar 

  10. Goguet A, Meunier F, Breen JP, Burch R, Petch MI, Chenciu AF (2004) J. Catal. 226:382

    Article  CAS  Google Scholar 

  11. Fu Q, Deng W, Saltsburg H, Flytzani-Stephanopoulos M (2005) Appl. Catal. B 56:57

    Article  CAS  Google Scholar 

  12. Wang X, Gorte RJ (2003) Appl. Catal. A 247:157

    Article  CAS  Google Scholar 

  13. Kundakovic L, Flytzani-Stephanopoulos M (1998) Appl. Catal. A 171:13

    Article  CAS  Google Scholar 

  14. Qi X, Flytzani-Stephanopoulos M (2004) Ind. Eng. Chem. Res. 43:3055

    Article  CAS  Google Scholar 

  15. Shido T, Iwasawa Y (1993) J. Catal. 141:71

    Article  CAS  Google Scholar 

  16. Shido T, Iwasawa Y (1992) J. Catal. 136:493

    Article  CAS  Google Scholar 

  17. Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley JC, El Fallah J, Hilaire L, Le Normand F, Quemere E, Sauvion GN, Touret O (1991) J. Chem. Soc. Faraday Trans. 87:1601

    Article  CAS  Google Scholar 

  18. Lamotte J, Lavalley JC, Druet E, Freund E (1983) J. Chem. Soc. Faraday Trans. 79:2219

    Article  CAS  Google Scholar 

  19. Holmgren A, Andersson B, Duprez D (1999) Appl. Catal. B 22:215

    Article  CAS  Google Scholar 

  20. Jacobs G, Patterson P, Williams L, Graham U, Sparks DE, Davis BH (2004) Appl. Catal. A: Gen. 269:63

    Article  CAS  Google Scholar 

  21. Jacobs G, Chenu E, Patterson P, Williams L, Sparks D, Davis BH (2004) Appl. Catal. 258:203

    Article  CAS  Google Scholar 

  22. Zalc JM, Sokolovskii V, LÖffler DG (2002) J. Catal. 206:169

    Article  CAS  Google Scholar 

  23. Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH (2005) J. Catal. 229:499–512

    Article  CAS  Google Scholar 

  24. Jacobs G, Davis BH (2007) Appl. Catal. A: Gen. 333:192–201

    Article  CAS  Google Scholar 

  25. Jacobs G, Ricote S, Patterson PM, Graham UM, Dozier A, Khalid S, Rhodus E, Davis BH (2005) Appl. Catal. A: Gen. 292:229–243

    Article  CAS  Google Scholar 

  26. Duprez D (2006) Catal. Today 112:17–22

    Article  CAS  Google Scholar 

  27. Burch R (2010) Platinum Met. Rev. 54:137–146

    Article  CAS  Google Scholar 

  28. Jacobs G, Davis BH (2010) Int. J. Hydrogen Energy 35:3522–3536

    Article  CAS  Google Scholar 

  29. Andreeva D, Kantcheva M, Ivanov I, Ilieva L, Sobczak JW, Lisowski W (2010) Catal. Today 158:69–77

    Article  CAS  Google Scholar 

  30. Yamamoto T, Suzuki A, Nagai Y, Tanabe T, Dong F, Inada Y, Nomura M, Tada M, Iwasawa Y (2007) Angew Chem Int Ed 46:9253

    Article  CAS  Google Scholar 

  31. Jacoby M (2001) Chem Eng News 79(32):33–38

    Google Scholar 

  32. T. Ressler, WinXAS 97, Version 1.0, 1997

  33. Jacobs G, Williams L, Graham U, Sparks D, Thomas G, Davis BH (2003) Appl. Catal. A: Gen. 252:107–118

    Article  CAS  Google Scholar 

  34. Jacobs G, Ricote S, Graham UM, Patterson PM, Davis BH (2005) Catal. Today 106:259–264

    Article  CAS  Google Scholar 

  35. Ricote S, Jacobs G, Milling M, Ji Y, Patterson PM, Davis BH (2006) Appl. Catal. A: Gen. 303:35–47

    Article  CAS  Google Scholar 

  36. Jacobs G, Patterson PM, Calico-Williams L, Chenu E, Sparks DE, Thomas GA, Davis BH (2004) Appl. Catal. A: Gen. 262:177–187

    Article  CAS  Google Scholar 

  37. Linganiso LZ, Jacobs G, Azzam KG, Graham UM, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2011) Appl. Catal. A: Gen. 394:105–116

    Article  CAS  Google Scholar 

  38. Overbury S, Huntly D, Mullins D, Glavee G (1998) Catal Lett 51:133

    Article  CAS  Google Scholar 

  39. El Fallah J, Boujani S, Dexpert H, Kiennemann A, Majerus J, Touret O, Villain F, Le Normand F (1994) J Phys Chem 98:5522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work carried out at the CAER was supported in part by funding from the Commonwealth of Kentucky. Argonne’s research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL). The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linganiso, L.Z., Pendyala, V.R.R., Jacobs, G. et al. Low-Temperature Water–Gas Shift: Doping Ceria Improves Reducibility and Mobility of O-Bound Species and Catalyst Activity. Catal Lett 141, 1723–1731 (2011). https://doi.org/10.1007/s10562-011-0720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0720-1

Keywords

Navigation