Skip to main content
Log in

Mechanism of Charge Transfer in the Transition Metal Ion Doped TiO2 with Bicrystalline Framework of Anatase and Rutile: Photocatalytic and Photoelectrocatalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The high photocatalytic activity of the Mn2+ doped TiO2 with bicrystalline framework of anatase and rutile is probed for the degradation of benzene under solar light with/without applied bias. The enhanced activity is attributed to the transfer of electrons from the rutile to electron trapping/lattice trapping sites of anatase and also to the impurity level created by the dopant which favours effective charge separation. The shallow detrapping nature of Mn2+ dopant additionally contributes to the overall enhancement in the photocatalytic activity especially in the presence of applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Devi LG, Krishnaiah GM (1999) J Photochem Photobiol A: Chem 121:141

    Article  Google Scholar 

  2. Devi LG, Murthy BN (2008) Catal Lett 125:320

    Article  CAS  Google Scholar 

  3. LG Devi, BN Murthy and SG Kumar (2009) Catal Lett. doi:10.1017/s10562-009-9938-6

  4. Devi LG, Kumar SG, Murthy BN, Kottam N (2009) Catal Commun 10:794

    Article  CAS  Google Scholar 

  5. Chao HE, Yun YU, Xingfang HU, Larbot A (2003) J Eur Ceram Soc 23:1457

    Article  CAS  Google Scholar 

  6. Huang Y, Zheng Z, Ai Z, Zhang L, Fan X, Zou Z (2003) J Phys Chem B 110:19323

    Article  CAS  Google Scholar 

  7. Burns A, Hayes G, Li W, Hirvonen J, Demaree JD, Shan SI (2004) Mater Sci Eng B 111:150

    Article  CAS  Google Scholar 

  8. Panpranot J, Kontapakdee K, Praserthdam P (2006) J Phys Chem B 110:8019

    Article  CAS  Google Scholar 

  9. Meulen TVD, Mattson A, Osterlund L (2007) J Catal 251:131

    Article  CAS  Google Scholar 

  10. Basca RR, Kiwi J (1998) Appl Catal B: Environ 16:19

    Article  Google Scholar 

  11. Jun W, Gang Z, Zhaohong Z, Xiangdong Z, Guan Z, Teng M, Yuefeng J, Peng Z, Ying L (2007) Dyes Pigments 75:335

    Article  CAS  Google Scholar 

  12. Lei S, Duan W (2008) J Environ Sci 20:1263

    Article  Google Scholar 

  13. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2000) J Catal 203:82

    Article  CAS  Google Scholar 

  14. Ohno T, Tokieda K, Higashida S, matsumura M (2003) Appl Catal B: Environ 244:383

    Article  CAS  Google Scholar 

  15. Lopez T, Gomez R, Sanchez E, Tzompantzi F, Vera L (2001) J Sol-Gel Sci Technol 22:99

    Article  CAS  Google Scholar 

  16. Zhang Q, Gao L, Guo J (2000) Appl Catal B: Environ 26:207

    Article  CAS  Google Scholar 

  17. Jung KY, Park SB, Jang HD (2006) Catal Commun 5:491

    Article  CAS  Google Scholar 

  18. Bessekhouad Y, Robert D, Weber JV (2003) J Photochem Photobiol A: Chem 157:47

    Article  CAS  Google Scholar 

  19. Slamet, Nasution HW, Purnama E, Kosela S, Gunlazuardi J (2005) Catal Commun 6:313–319

    Article  CAS  Google Scholar 

  20. Xiao Q, Si Z, Yu Z, Qiu G (2007) Mater Sci Eng B 137:189

    Article  CAS  Google Scholar 

  21. Leytner S, Hupp JT (2000) Chem Phys Lett 330:231

    Article  CAS  Google Scholar 

  22. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545

    Article  CAS  Google Scholar 

  23. Yu J, Zhou M, Cheng B (2006) J Hazard Mater 137:1838

    Article  CAS  Google Scholar 

  24. Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669

    Article  Google Scholar 

  25. Xu AW, Gao Y, Liu HQ (2002) J Catal 207:151

    Article  CAS  Google Scholar 

  26. Hong X, Wang Z, Cai W, Lu F, Zhang J, Yang Y, Ma N, Lin Y (2005) Chem Mater 17:1548

    Article  CAS  Google Scholar 

  27. Li G, Dimitrijevic NM, Chen L, Nichols JM, Rajh T, Gray KA (2008) J Am Chem Soc 130:5402

    Article  CAS  Google Scholar 

  28. Zhang Z, Wang CC, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871

    Article  CAS  Google Scholar 

  29. Yang Y, Li XJ, Chen JT, Wang LY (2004) J Photochem Photobiol A: Chem 163:517

    Article  CAS  Google Scholar 

  30. Zanoni MVB, Sene JJ, Anderson MA (2003) J Photochem Photobiol A: Chem 157:55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from UGC Major Research Project (2007–2010), Government of India is acknowledged. The author Nagaraju Kottam acknowledges to M. S. Ramaiah institute of Technology for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gomathi Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathi Devi, L., Kottam, N., Girish Kumar, S. et al. Mechanism of Charge Transfer in the Transition Metal Ion Doped TiO2 with Bicrystalline Framework of Anatase and Rutile: Photocatalytic and Photoelectrocatalytic Activity. Catal Lett 131, 612–617 (2009). https://doi.org/10.1007/s10562-009-0015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0015-y

Keywords

Navigation