Skip to main content
Log in

Sodium Hydroxide–Sodium Oxalate-Assisted Co-Precipitation of Highly Active and Stable Cu/ZrO2 Catalyst in the Partial Oxidation of Methanol to Hydrogen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Cu/ZrO2 catalysts prepared by the co-precipitation with NaOH–Na2C2O4 mixture solution exhibited high activity and stability in the hydrogen production through partial oxidation of methanol. The methanol conversion and the selectivity to hydrogen can be up to 100 and 92% at 533 K with molar ratio of O2/CH3OH at 0.5, respectively. Characterization results indicated that CuO were well dispersed into the ZrO2 lattices which induced the strong Cu–Zr interaction as well as good stability and lower valance of Cu species were supposed as the activate sites. The good catalytic performance and long-term stability of the novel Cu/ZrO2 catalysts could be attributed to the high copper species dispersion on zirconium components and high active specific copper surface area with a much strong Cu–Zr interaction as well as a beneficial synergy of ZrO2 promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrell J, Birgersson H, Boutonnet M (2002) J Power Sources 106:249

    Article  CAS  Google Scholar 

  2. Ahmed S, Krumpelt M (2001) Int J Hydrogen Energ 26:291

    Article  CAS  Google Scholar 

  3. Yao CZ, Wang LC, Liu YM, Wu GS, Cao Y, Dai WL, He HY, Fan KN (2006) Appl Catal A 297:151

    Article  CAS  Google Scholar 

  4. Vankova S, Tsoncheva T, Mehandjiev D (2004) Catal Commun 5:95

    Article  CAS  Google Scholar 

  5. Tsoncheva T, Vankova S, Mehandjiev D (2003) Fuel 82:755

    Article  CAS  Google Scholar 

  6. Matter PH, Braden DJ, Ozkan US (2004) J Catal 223:340

    Article  CAS  Google Scholar 

  7. Wang Z, Xi J, Wang W, Lu G (2003) J Mol Catal A 191:123

    Article  CAS  Google Scholar 

  8. Wang Z, Wang W, Lu G (2003) Int J Hydrogen Energ 28:151

    Article  CAS  Google Scholar 

  9. Cubeiro ML, Fierro JLG (1998) Appl Catal A 168:307

    Article  CAS  Google Scholar 

  10. Alejo L, Lago R, Pena MA, Fierro JLG (1997) Appl Catal A 162:281

    Article  CAS  Google Scholar 

  11. Agrell J, Germani G, Jaras SG, Boutonnet M (2003) Appl Catal A 242:233

    Article  CAS  Google Scholar 

  12. Agrell J, Boutonnet M, Fierro JLG (2003) Appl Catal A 253:213

    Article  CAS  Google Scholar 

  13. Velu S, Suzuki K, Okazaki M, Kapoor MP, Osaki T, Ohashi F (2000) J Catal 194:373

    Article  CAS  Google Scholar 

  14. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:56

    CAS  Google Scholar 

  15. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:43

    CAS  Google Scholar 

  16. Eswaramoorthi I, Sundaramurthy V, Dalai AK (2006) Appl Catal A 313:22

    Article  CAS  Google Scholar 

  17. Fisher IA, Bell AT (1999) J Catal 184:357

    Article  CAS  Google Scholar 

  18. Fisher IA, Bell AT (1998) J Catal 178:153

    Article  CAS  Google Scholar 

  19. Fisher IA, Bell AT (1997) J Catal 172:222

    Article  CAS  Google Scholar 

  20. de Lima SM, Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) J Catal 257:356

    Article  Google Scholar 

  21. Eduardo W (2007) US Patent 2007269367

  22. Pokrovski KA, Bell AT (2006) J Catal 244:43

    Article  CAS  Google Scholar 

  23. Robert S, Thorsten R, Frank G, Herry P, Reinhard S, Markus A, Hendrik SJ, Rachel C, WO2004083116

  24. Oguchi H, Kanai H, Utani K, Matsumura Y, Imamura S (2005) Appl Catal A 293:64

    Article  CAS  Google Scholar 

  25. Ritzkopf I, Vukojevic S, Weidenthaler C, Grunwaldt J, Schuth F (2006) Appl Catal A 302:215

    Article  CAS  Google Scholar 

  26. Chen HW, Yin AY, Dai WL, Fan KN (2009) Acta Chim Sinica 2:129

    Google Scholar 

  27. Toraya H, Yashmura M, Somiya S (1984) J Am Ceram Soc 67:119

    Article  Google Scholar 

  28. Liu Z, Amiridis MD, Chen Y (2005) J Phys Chem B 109:1251

    Article  CAS  Google Scholar 

  29. Caballero A, Morales JJ, Cordon AM, Holgado JP, Espinos JP, Gonzalez-Elipe AR (2005) J Catal 235:295

    Article  CAS  Google Scholar 

  30. Fierro G, Lo Jacono M, Inversi M, Porta P, Cioci F, Lavecchia R (1996) Appl Catal A 137:327

    Article  CAS  Google Scholar 

  31. Robinson WRAM, Mol JC (1991) Appl Catal A 76:117

    Article  CAS  Google Scholar 

  32. Campos-Martin JM, Fierro JLG, Guerrero-Ruiz A, Herman RG, Klier K (1996) J Catal 163:418

    Article  CAS  Google Scholar 

  33. Rhodes MD, Bell AT (2005) J Catal 233:198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major State Basic Resource Development Program (Grant No. 2003CB615807), NSFC (Project 20573024), and the Science & Technology Commission of Shanghai Municipality (08DZ2270500, 06JC14004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Lin Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Yin, A., Guo, X. et al. Sodium Hydroxide–Sodium Oxalate-Assisted Co-Precipitation of Highly Active and Stable Cu/ZrO2 Catalyst in the Partial Oxidation of Methanol to Hydrogen. Catal Lett 131, 632–642 (2009). https://doi.org/10.1007/s10562-009-0008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0008-x

Keywords

Navigation