Skip to main content

Advertisement

Log in

A Facile, Direct Synthesis of Styrene Carbonate from Styrene and CO2 Catalyzed by Au/Fe(OH)3–ZnBr2/Bu4NBr System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A three-component catalyst composed of Au/Fe(OH)3, ZnBr2, and Bu4NBr was shown to be very efficient for direct oxidative carboxylation of styrene to styrene carbonate. An enhanced styrene carbonate yield (53%) was obtained under mild reaction conditions of 80 °C, 10 h, and 4 MPa CO2 pressure. In this reaction, CO2 acts as both a reagent and a solvent. The influence of various reaction parameters, such as catalyst pretreatment, CO2 pressure, and reaction time has been investigated carefully. Furthermore, the active sites in supported Au catalyst are studied. The results obtained suggest that synergistic effect of gold ions and ferric hydroxide over Au/Fe(OH)3 catalyst might be important for its better catalytic performance in epoxidation of styrene as compared with supported gold catalyst on oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. The Rio Declaration (1992) United Nations Conference on Environment and Development, Rio de Janerio, June 3–14

  2. Anastas PT, Wilimson TC (eds) (1996) Green chemistry, ACS symposium series 626. American Chemical Society, Washington, DC

  3. Trost BM (1991) Science 254:1471

    Article  CAS  Google Scholar 

  4. Shaikh AG, Sivaram S (1996) Chem Rev 96:951

    Article  CAS  Google Scholar 

  5. Peppel WJ (1958) Ind Eng Chem Res 50:767

    Article  CAS  Google Scholar 

  6. Gerhartz W, Weinheim VCH et al (1986) Ullmann’s encyclopedia of industrial chemistry, 5th edn., vol A5

  7. Clements JH (2003) Ind Eng Chem Res 42:663

    Article  CAS  Google Scholar 

  8. Inoue S, Koinuma H, Tsuruta T (1969) Polym Lett 7:287

    Article  CAS  Google Scholar 

  9. Inoue S (1976) Chemtech 588

  10. Kihara N, Hara N, Endo T (1993) J Org Chem 58:6198

    Article  CAS  Google Scholar 

  11. Zhu H, Chen LB, Jiang Y-Y (1996) Polym Adv Technol 7:701

    Article  CAS  Google Scholar 

  12. Zhao T, Han Y, Sun Y (1999) Phys Chem Chem Phys 1:3047

    Article  CAS  Google Scholar 

  13. Iwasaki T, Kihara N, Endo T (2000) Bull Chem Soc Jpn 73:713

    Article  CAS  Google Scholar 

  14. Kawanami H, Ikushima Y (2000) Chem Commun 2089

  15. Shen YM, Duah WL, Shi M (2003) Adv Synth Catal 345:337

    Article  CAS  Google Scholar 

  16. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartrio R (2003) Tetrahedron Lett 44:2931

    Article  CAS  Google Scholar 

  17. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T (1997) Chem Commun 1129

  18. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) J Am Chem Soc 121:4526

    Article  CAS  Google Scholar 

  19. Bhanage BM, Fujita S, Ikushima Y, Arai M (2001) Appl Catal A Gen 219:259

    Article  CAS  Google Scholar 

  20. Yasuda H, He LN, Sakakura T (2002) J Catal 209:547

    Article  CAS  Google Scholar 

  21. Doskocil EJ, Bordawekar SV, Kaye BC, Davis RJ (1999) J Phys Chem B 103:6277

    Article  CAS  Google Scholar 

  22. Tu M, Davis RJ (2001) J Catal 199:85

    Article  CAS  Google Scholar 

  23. Fujita S, Bhanage BM, Ikushima Y, Arai M (2002) Catal Lett 79:95

    Article  CAS  Google Scholar 

  24. Bhanage BM, Fujita S, Ikushima Y, Arai M (2003) Green Chem 5:71

    Article  CAS  Google Scholar 

  25. Kim HS, Kim JJ, Lee BG, Jung OS, Jang HG, Kang SO (2000) Angew Chem Int Ed Eng 39:4096

    Article  CAS  Google Scholar 

  26. Paddock RL, Nguyen ST (2001) J Am Chem Soc 123:11498

    Article  CAS  Google Scholar 

  27. Li FW, Xia CG, Xu LW, Sun W, Chen GX (2003) Chem Commun 2042

  28. Paddock RL, Hiyama Y, McKay JM, Nguyen ST (2004) Tetrahedron Lett 45:2023

    Article  CAS  Google Scholar 

  29. Aresta M, Quaranta E (1987) J Mol Catal A Chem 41:355

    CAS  Google Scholar 

  30. Aresta M, Dibenedetto A (2002) J Mol Catal A Chem 182–183:399

    Article  Google Scholar 

  31. Aresta M, Dibenedetto A, Tommasi I (2000) Appl Organomet Chem 14:799

    Article  CAS  Google Scholar 

  32. Srivastava R, Srinivas D, Ratnasamy P (2003) Catal Lett 91:133

    Article  CAS  Google Scholar 

  33. Sun JM, Fujita S, Bhanage BM, Arai M (2004) Catal Today 93–95:383

    Article  Google Scholar 

  34. Sun JM, Fujita S, Bhanage BM, Arai M (2004) Catal Commun 5:83

    Article  CAS  Google Scholar 

  35. Sun JM, Fujita S, Arai M (2005) J Organomet Chem 690:3490

    Article  CAS  Google Scholar 

  36. Sun JM, Fujita S, Zhao FY, Hasegawa M, Arai M (2005) J Catal 230:398

    Article  CAS  Google Scholar 

  37. Qiao BT, Deng YQ (2003) Chem Commun 2192

  38. Denkwitz Y, Karpenko A, Plzak V, Leppelt R, Schumacher B, Behm RJ (2007) J Catal 246:74

    Article  CAS  Google Scholar 

  39. Venugopal A, Scurrell MS (2004) Appl Catal A 258:241

    Article  CAS  Google Scholar 

  40. Haruta M (2002) CATTECH 6(3):102

    Article  CAS  Google Scholar 

  41. Lin JN, Chen JH, Hsiao CY, Kang YM, Wan BZ (2002) Appl Catal B: Environ 36:19

    Article  CAS  Google Scholar 

  42. Park ED, Lee JS (1999) J Catal 186:1

    Article  CAS  Google Scholar 

  43. Xia YF, Ye CY, Zhang J (eds) (1984) Mössbauer effect and application. Atomic Energy Publisher, Beijing

    Google Scholar 

  44. Hodge NA, Kiely CJ, Whyman R (2002) Catal Today 72:133

    Article  CAS  Google Scholar 

  45. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935

    Article  CAS  Google Scholar 

  46. Zanella R, Louis C, Giorgio S, Touroude R (2004) J Catal 223:328

    Article  CAS  Google Scholar 

  47. Tada H, Suzuki F, Yoneda S, Ito S, Kobayashi H (2001) Phys Chem Chem Phys 3:1376

    Article  CAS  Google Scholar 

  48. Choudrhary VR, Patil NS, Bhargava SK (2003) Catal Lett 89:55

    Article  Google Scholar 

  49. Peng JJ, Deng Y (2001) New J Chem 25:639

    Article  CAS  Google Scholar 

  50. Yalkenberg MH, de Castro C, Hölderich WF (2002) Green Chem 4:88

    Article  Google Scholar 

  51. Nomura R, Kimura M, Teshima S, Ninagawa A, Matsuda H (1982) Bull Chem Soc Jpn 55:3200

    Article  CAS  Google Scholar 

  52. Kozlova AP, Kozlov AI, Sugiyama S, Matsui Y, Asakura K, Iwasawa Y (1999) J Catal 181:37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial supports from the National Natural Science Foundation of China (20603011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Sun, J., Xiang, D. et al. A Facile, Direct Synthesis of Styrene Carbonate from Styrene and CO2 Catalyzed by Au/Fe(OH)3–ZnBr2/Bu4NBr System. Catal Lett 129, 437–443 (2009). https://doi.org/10.1007/s10562-008-9820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9820-y

Keywords

Navigation