Skip to main content

Advertisement

Log in

Physicochemical Characterization of Al2O3 Supported Ni–Rh Systems and their Catalytic Performance in CH4/CO2 Reforming

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Activity and stability of alumina-supported monometallic Ni, Rh and bimetallic Ni–Rh catalysts were studied towards carbon dioxide reforming of methane. The catalysts were prepared by the incipient wetness impregnation method with different contents of Rh and Ni and were characterized by H2 chemisorption, TPRH2, XRD, FT-IR and ToF-SIMS methods. The process of Ni–Rh alloy formation and nickel enrichment on alloy surface takes place during temperature-programmed hydrogen assisted decomposition of their precursors. Catalytic stability and resistance towards coke deposition for Rh/Al2O3 and Ni–Rh/Al2O3 catalysts are much higher than for Ni/Al2O3 and Ni–Rh/SiO2 systems, studied in the first part of this paper (Jóźwiak WK, Nowosielska M, Rynkowski JM, Appl. Catal. A 280:233, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jóźwiak WK, Nowosielska M, Rynkowski JM (2005) Appl Catal A 280:233

    Article  CAS  Google Scholar 

  2. Wang HY, Ruckenstein E (2000) Appl Catal A 204:143

    Article  CAS  Google Scholar 

  3. Nandini A, Pant KK, Dhingra SC (2005) Appl Catal A 290:166

    Article  CAS  Google Scholar 

  4. Hou Z, Yokota O, Tanaka T, Yashima T (2003) Appl Catal A 253:381

    Article  CAS  Google Scholar 

  5. Juan-Juan J, Román-Martínez MC, Illán-Gómez MJ (2004) Appl Catal A 264:169

    Article  CAS  Google Scholar 

  6. Riva R, Miessner H, Vitali R, Del Piero G (2000) Appl Catal A 196:111

    Article  CAS  Google Scholar 

  7. Williams FL, Nason D (1974) Surf Sci 45:377

    Article  CAS  Google Scholar 

  8. Hultgren R, Orr RL, Anderson PD, Kelly K (1963) Selected values of thermodynamic properties of metals and alloys. Wiley, New York

    Google Scholar 

  9. Leclercq G, Pietrzyk S, Gengembre L, Leclercq L (1986) Appl Catal 27:299

    Article  CAS  Google Scholar 

  10. Irusta S, Cornaglia LM, Lombardo EA (2002) J Catal 210:7

    Article  CAS  Google Scholar 

  11. Irusta S, Cornaglia LM, Lombardo EA (2002) J Catal 210:263

    Article  CAS  Google Scholar 

  12. Silva LMS, Órfão JJM, Figueiredo JL (2001) Appl Catal A 209:145

    Article  CAS  Google Scholar 

  13. Maniecki TP (2002) Doctor’s Thesis, Institute of General and Ecological Chemistry, Technical University of Łódź

  14. Hou Z, Yashima T (2003) Catal Lett 89:193

    Article  CAS  Google Scholar 

  15. Vis JK Doctor’s Thesis, Eindhoven, Holandia

  16. Burch R, Loader PK, Cruise NA (1996) Appl Catal A 147:375

    Article  CAS  Google Scholar 

  17. Wang R, Xu H, Liu X, Ge Q, Li W (2006) Appl Catal A 305:204

    Article  CAS  Google Scholar 

  18. Rynkowski JM, Paryjczak T, Lenik M (1995) Appl Catal A 126:257

    Article  CAS  Google Scholar 

  19. Lee J-H, Lee E-G, Joo O-S, Jung K-D (2004) Appl Catal A 269:1

    Article  CAS  Google Scholar 

  20. Rynkowski JM, Paryjczak T, Lenik M (1993) Appl Catal A 106:73

    Article  CAS  Google Scholar 

  21. Li B, Watanabe R, Maruyama K, Nurunnabi M, Kunimori K, Tomishige K (2005) Appl Catal A 290:36

    Article  CAS  Google Scholar 

  22. Rzeźnicka I, Góralski J, Paryjczak T (2001) Chem Environ Res 10:47

    Google Scholar 

  23. Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Int J Hydrogen Energy 31:555

    Article  CAS  Google Scholar 

  24. Hwang Ch, Yeh Ch, Zhu Q (1999) Catal Today 51:93

    Article  CAS  Google Scholar 

  25. Wang HP, Yates JT Jr (1984) J Catal 89:79

    Article  CAS  Google Scholar 

  26. Chuang SSC, Tan Ch (1997) Catal Today 35:369

    Article  CAS  Google Scholar 

  27. Solymosi F, Pásztor M (1986) J Phys Chem 90:5312

    Article  CAS  Google Scholar 

  28. Yates JT, Duncan TM, Vanghan RW (1979) J Phys Chem 71:3908

    Article  CAS  Google Scholar 

  29. van’t Bilk HFA, Dvon Zon JBA, Hulzinga T, Vis JC, Koningsberger DC, Prins R (1983) J Phys Chem 87:2264

    Google Scholar 

  30. Bulushev D, Froment GF (1999) J Mol Catal A Chem 139:63

    Article  CAS  Google Scholar 

  31. Agnelli M, Swaan HM, Marquez-Alvarez C, Martin GA, Mirodatos C (1998) J Catal 175:117

    Article  CAS  Google Scholar 

  32. de Souza MMVM, Clavé L, Dubois V, Perez CAC, Schmal M (2004) Appl. Catal. A 272:133

    Google Scholar 

  33. Lewicki A, Paryjczak T, Jóźwiak WK, Rynkowski JM (2002) Wiad Chem 56:279

    CAS  Google Scholar 

  34. Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) J Catal 158:51

    Article  CAS  Google Scholar 

  35. Schuurman Y, Marquez-Alvarez C, Kroll VCH, Mirodatos C (1998) Catal Today 46:185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grant No. PBZ/KBN/116/T09/2004 of the State Committee for Scientific Research. The authors are indebted to Prof. R. Fiedorow from the Adam Mickiewicz University of Poznan (UAM) for carrying out hydrogen chemisorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nowosielska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowosielska, M., Jozwiak, W.K. & Rynkowski, J. Physicochemical Characterization of Al2O3 Supported Ni–Rh Systems and their Catalytic Performance in CH4/CO2 Reforming. Catal Lett 128, 83–93 (2009). https://doi.org/10.1007/s10562-008-9737-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9737-5

Keywords

Navigation