Skip to main content
Log in

Gold/Platinum Bimetallic Core/Shell Nanoparticles Stabilized by a Fréchet-Type Dendrimer: Preparation and Catalytic Hydrogenations of Phenylaldehydes and Nitrobenzenes

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Au/Pt bimetallic core/shell nanoparticles that were stabilized by polyaryl ether trisacetic acid ammonium chloride dendrons (G3NACl) were synthesized and used as catalysts for the hydrogenation of 3-phenoxybenzaldehyde to 3-phenoxyphenyl methanol and nitrobenzenes to anilines. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible absorption spectroscopy revealed that Au/Pt bimetallic nanoparticles with a 6-nm Au core and average overall diameters of 9.0 ± 2.4 nm, 10.4 ± 2.8 nm, and 13.0 ± 3.2 nm for Au75Pt25@G3NACl, Au50Pt50@G3NACl, and Au25Pt75@G3NACl, respectively, had formed. Au/Pt bimetallic nanoparticles showed higher catalytic activity for the hydrogenation of nitrotoluenes to anilines and 3-phenoxybenzaldehyde to 3-phenoxyphenyl methanol as compared to monometallic platinum nanoparticles and physical mixtures of monometallic Pt and Au nanoparticles. The higher activity of the Au/Pt bimetallic nanoparticles may be attributed to the fact that the gold core attracts electrons from platinum. The electron-deficient platinum shell may favor the adsorption of the substrate with polar carboxyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexeev OS, Gates BC (2003) Ind Eng Chem Res 42:1571–1587

    Article  CAS  Google Scholar 

  2. Sinfelt J (1987) Acc Chem Res 20:134

    Article  CAS  Google Scholar 

  3. Raja R, Thomas JM (2002) J Mol Catal A: Chem 181:3

    Article  CAS  Google Scholar 

  4. Johnson BFG, Raynor SA, Brown DB, Shephard DS, Mashmeyer T, Thomas JM, Hermans S, Raja R, Sankar G (2002) J Mol Catal A: Chem 182–183:89

    Article  Google Scholar 

  5. Veisz B, Tóth L, Teschner D, Paál Z, Győrffy N, Wild U, Schlögl R (2005) J Mol Catal A: Chem 238:56

    Article  CAS  Google Scholar 

  6. Guczi L, Beck A, Horváth A, Koppány Z, Stefler G, Frey K, Sajó I, Geszti O, Bazin D, Lynch J (2003) J Mol Catal A: Chem 204–205:545

    Article  Google Scholar 

  7. Pronkin SN, Simonov PA, Zaikovskii VI, Savinova ER (2007) J Mol Catal A: Chem 265:141

    Article  CAS  Google Scholar 

  8. Chung YM, Rhee HK (2003) J Mol Catal A: Chem 206:291–298

    Article  CAS  Google Scholar 

  9. Villa A, Campione C, Prati L (2007) Catal Lett 115:133

    Article  CAS  Google Scholar 

  10. Nutt MO, Heck KN, Alvarez P, Wong MS (2006) Appl Catal B Environ 69:115

    Article  CAS  Google Scholar 

  11. Scott R, Datye A, Crooks R (2003) J Am Chem Soc 125:1757

    Google Scholar 

  12. Lu P, Teranishi T, Asakura K, Miyake M, Toshima N (1999) J Phys Chem B 103:9673

    Article  CAS  Google Scholar 

  13. Rampino L, Nord F (1941) J Am Chem Soc 63:2745

    Article  CAS  Google Scholar 

  14. Newkome G, Yao Z, Baker GR, Gupta VK (1985) J Org Chem 50:2003

    Article  CAS  Google Scholar 

  15. Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638

    Article  CAS  Google Scholar 

  16. Niu Y, Yeung L, Crooks R (2001) J Am Chem Soc 123:6840

    Article  CAS  Google Scholar 

  17. Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237

    Article  CAS  Google Scholar 

  18. Rahim E, Kamounah F, Frederiksen J, Christensen J (2001) Nano Lett 1:499

    Article  CAS  Google Scholar 

  19. Gopidas K, Whitesell J, Fox M (2003) Nano Lett 3:1757

    Article  CAS  Google Scholar 

  20. Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Macromolecules 33:6042

    Article  Google Scholar 

  21. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K (2002) Nano Lett 2:999

    Article  CAS  Google Scholar 

  22. Zhao M, Crooks R (1998) J Am Chem Soc 120:4877

    Article  CAS  Google Scholar 

  23. Bhyrappa P, Young J, Moore J, Suslick K (1996) J Mol Catal A: Chem 113:109

    Article  CAS  Google Scholar 

  24. Yang Z, Kang Q, Ma H, Li C, Lei Z (2004) J Mol Catal A: Chem 213:169

    Article  CAS  Google Scholar 

  25. Koten G, Jastrzebski J (1999) J Mol Catal A: Chem 146:317

    Article  Google Scholar 

  26. Touzani R, Alper H (2005) J Mol Catal A: Chem 227:197

    Article  CAS  Google Scholar 

  27. Huang Y, Zhang H, Deng G, Tang W, Wang X, He Y, Fan Q (2005) J Mol Catal A: Chem 227:91

    Article  CAS  Google Scholar 

  28. Mizugaki T, Ooe M, Ebitani K, Kaneda K (1999) J Mol Catal A: Chem 145:329

    Article  CAS  Google Scholar 

  29. Smith G, Mapolie S (2004) J Mol Catal A: Chem 213:187

    Article  CAS  Google Scholar 

  30. Yi B, Fan Q, Deng G, Li Y, Qiu L, Chan A (2004) Org Lett 6:1361

    Article  CAS  Google Scholar 

  31. Du Y, Zhang W, Wang X, Yang P (2006) Catal Lett 107:177

    Article  CAS  Google Scholar 

  32. Yang P, Zhang W, Du Y, Wang X (2006) J Mol Catal A: Chem 260:4

    Article  CAS  Google Scholar 

  33. Zhang W, Du Y, Hua N, Wang X, Yang P (2006) Chinese J Inorg Chem 22:263

    CAS  Google Scholar 

  34. Li X, Du Y, Tao J, Wang X, Yang P (2007) Catal Lett 118:151

    Article  CAS  Google Scholar 

  35. Ropartz L, Foster DF, Morris RE, Slawin AMZ, Cole-Hamilton DJ (2002) J Chem Soc, Dalton Trans, 1997

  36. Tomalia DA, Naylor AM, Goddard WAIII (1990) Angew Chem Int Ed Engl 29:138

    Article  Google Scholar 

  37. Wilson O, Scott R, Garcia-Martinez J, Crooks R (2005) J Am Chem Soc 127:1015–1024

    Article  CAS  Google Scholar 

  38. Scott R, Datye A, Crooks R (2003) J Am Chem Soc 125:3708–3709

    Article  CAS  Google Scholar 

  39. Chung Y, Rhee H (2003) Catal Lett 85:159–164

    Article  CAS  Google Scholar 

  40. Li X, Li B, Cheng M, Du Y, Wang X, Yang P (2008) J Mol Catal A: Chem 284:1–7

    Article  CAS  Google Scholar 

  41. Lang H, Maldonado S, Stevenson K, Chandler B (2004) J Am Chem Soc 126:12949–12956

    Article  CAS  Google Scholar 

  42. Villa A, Campione C, Prati L (2007) Catal Lett 115:133–136

    Article  CAS  Google Scholar 

  43. Scott R, Wilson O, Oh S-K, Kenik E, Crooks R (2004) J Am Chem Soc 126:15583–15591

    Article  CAS  Google Scholar 

  44. Shen M, Du YK, Hua NP, Jiang L, Yang P (2006) Powder Technol 162:64–72

    Article  CAS  Google Scholar 

  45. Kashchiev D, Rosmalen G (2003) Cryst Res Technol 38:555–574

    Article  CAS  Google Scholar 

  46. Gluhoi AC, Vreeburg HS, Bakker JW, Nieuwenhuys BE (2005) Appl Catal A Gen 291:145–150

    Article  CAS  Google Scholar 

  47. Schmid G (1992) Chem Rev 92:1709–1727

    Article  CAS  Google Scholar 

  48. Liz-Marzan L, Philipse A (1995) J Phys Chem 99:15120–15128

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors thank the National Natural Science Foundation of China (20673075, 20553001, and 90607024) for financial support and the reviewers of the manuscript for the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Li, L., Du, Y. et al. Gold/Platinum Bimetallic Core/Shell Nanoparticles Stabilized by a Fréchet-Type Dendrimer: Preparation and Catalytic Hydrogenations of Phenylaldehydes and Nitrobenzenes. Catal Lett 127, 429–436 (2009). https://doi.org/10.1007/s10562-008-9725-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9725-9

Keywords

Navigation