Skip to main content
Log in

Potassium Promotion of Cobalt Spinel Catalyst for N2O Decomposition—Accounted by Work Function Measurements and DFT Modelling

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The beneficial effect (decrease of the half conversion temperature by 100 °C) of potassium doping, in the range of 0–5 atoms/nm2, on N2O decomposition over Co3O4 was analyzed by work function measurements and DFT calculations. The optimal potassium surface loading was found to be 1.8 atoms/nm2. The effect was explained in terms of electronic promotion gauged by lowering of the catalyst work function by 0.48 eV (for K2CO3 precursor) and 0.44 eV (for KOH). The promotional effect is discussed in relation to the theoretical and experimental surface dipoles determined from Hirshfeld atomic charges and geometry of the postulated potassium adspecies and from the Topping model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pérez-Ramírez J, Kapteijn F, Schöffel K, Moulijn JA (2003) Appl Catal B 44:117

    Article  Google Scholar 

  2. Kondratenko EV, Pérez-Ramírez J (2007) Catal Today 121:197

    Article  CAS  Google Scholar 

  3. Kapteijn F, Rodriguez-Mirasol J, Moulij JA (1996) Appl Catal B 9:25

    CAS  Google Scholar 

  4. Lunsford JH (1975) The Catalytic Chemistry of Nitrogen Oxides. Plenum, New York

    Google Scholar 

  5. Haber J, Machej T, Janas J, Nattich M (2004) Catal Today 90:15

    Article  CAS  Google Scholar 

  6. Haber J, Nattich M, Machej T (2008) Appl Catal B 77:278

    Article  CAS  Google Scholar 

  7. Russo N, Mescia D, Fino D, Saracco G, Speccia V (2007) Ind Eng Chem Res 46:4226

    Article  CAS  Google Scholar 

  8. Obalona L, Fila V (2007) Appl Cat B 70:353

    Article  Google Scholar 

  9. Abu-Zied BM, Schwieger W, Unger A (2008) Appl Catal B. doi:10.1016/j.apcatb.2008.04.004

  10. Kondratenko EV, Kondratenko VA, Santiago M, Perez-Ramírez J (2008) J Catal 256:248

    Article  CAS  Google Scholar 

  11. Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B 46:473

    Article  CAS  Google Scholar 

  12. Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Appl Catal B 78:242

    Article  CAS  Google Scholar 

  13. Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145

    Article  CAS  Google Scholar 

  14. Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A 146:255

    Article  CAS  Google Scholar 

  15. Yan L, Ren T, Wang X, Ji D, Suo J (2003) Appl Catal B 45:85

    Article  CAS  Google Scholar 

  16. Yan L, Ren T, Wang X, Gao Q, Ji D, Suo J (2003) Catal Commun 4:505

    Article  CAS  Google Scholar 

  17. Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2005) Catal Commun 6:329

    Article  CAS  Google Scholar 

  18. Xue L, Zhang C, He H, Teraoka Y (2007) Catal Today 126:449

    Article  CAS  Google Scholar 

  19. Somorjai GA (1994) Introduction to Surface Chemistry and Catalysis. New York, Wiley

    Google Scholar 

  20. Kotarba A, Adamski G, Piskorz W, Sojka Z, Sayag C, Djega-Mariadassou GJ (2004) Phys Chem B 108:2885

    Article  CAS  Google Scholar 

  21. Benedek NA, Snook IK, Latham K, Yarovsky IJ (2005) J Chem Phys 122:144102

    Article  CAS  Google Scholar 

  22. DMol3 User Guide (2003) Accelrys Inc., San Diego, CA

  23. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  24. Fisher TH, Almlof J (1992) J Phys Chem 96:9768

    Article  Google Scholar 

  25. Chang KS, Song H, Park Y-S, Woo J-W (2004) Appl Catal A: General 273:223

    Article  CAS  Google Scholar 

  26. Brison J, Mine N (2007) Surf Sci 601:1467

    Article  CAS  Google Scholar 

  27. Verhoef RW, Asscher M (1997) Surf Sci 391:11

    Article  CAS  Google Scholar 

  28. Wang L, Maxish T, Ceder G (2006) Phys Rev B 73:195107

    Article  Google Scholar 

  29. Tang X, Li J, Hao J (2007) Mater Res Bull. doi:10.1016/j.materresbull.2007.12.009

  30. Xu R, Chun-Zeng H (2003) J Phys Chem B 107:926

    Article  CAS  Google Scholar 

  31. Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Catal Today 137:418

    Article  CAS  Google Scholar 

  32. Scagnelli A, Valentin CD, Pacchioni G (2006) Surf Sci 600:386

    Article  CAS  Google Scholar 

  33. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198

    Article  Google Scholar 

Download references

Acknowledgments

This work was done within The European Research Project COST D41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kotarba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zasada, F., Stelmachowski, P., Maniak, G. et al. Potassium Promotion of Cobalt Spinel Catalyst for N2O Decomposition—Accounted by Work Function Measurements and DFT Modelling. Catal Lett 127, 126–131 (2009). https://doi.org/10.1007/s10562-008-9655-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9655-6

Keywords

Navigation