Skip to main content
Log in

Oxidative Dehydrogenation of C4 Raffinate-3 to 1,3-Butadiene in a Dual-bed Reaction System Comprising ZnFe2O4 and Co9Fe3Bi1Mo12O51 Catalysts: A Synergistic Effect of ZnFe2O4 and Co9Fe3Bi1Mo12O51 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene was carried out in a dual-bed reaction system comprising ZnFe2O4 and Co9Fe3Bi1Mo12O51 catalysts in order to investigate a synergistic effect of these two catalysts. Conversion of n-butene and yield for 1,3-butiadene obtained in a dual-bed reaction system comprising ZnFe2O4 (first-bed) and Co9Fe3Bi1Mo12O51 (second-bed) were higher than those obtained in a single-bed reaction system using either ZnFe2O4 or Co9Fe3Bi1Mo12O51. 1-Butene-TPD and 2-butene-TPD measurements revealed that ZnFe2O4 catalyst retained more selective oxygen species for the reaction with 2-butene than for the reaction with 1-butene, while Co9Fe3Bi1Mo12O51 catalyst retained more selective oxygen species for the reaction with 1-butene than for the reaction with 2-butene. The synergistic effect of ZnFe2O4 (first-bed) and Co9Fe3Bi1Mo12O51 (second-bed) catalysts in the oxidative dehydrogenation of C4 raffinate-3 was attributed to the combination of high catalytic activity of ZnFe2O4 for 2-butene and high catalytic activity of Co9Fe3Bi1Mo12O51 for 1-butene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Batist PhA, Bouwens JFH, Schuit GCA (1972) J Catal 25:1

    Article  CAS  Google Scholar 

  2. Grasselli RK (2002) Topics Catal 21:79

    Article  CAS  Google Scholar 

  3. Linn WJ, Sleight AW (1976) J Catal 41:134

    Article  CAS  Google Scholar 

  4. Oh SC, Lee HP, Kim HT, Yoo KO (1999) Korean J Chem Eng 16:543

    Article  CAS  Google Scholar 

  5. Madeira LM, Portela MF (2002) Catal Rev 44:247

    Article  CAS  Google Scholar 

  6. Moro-oka Y, Ueda W (1994) Adv Catal 40:233

    Article  CAS  Google Scholar 

  7. Ueda W, Asakawa K, Chen C-L, Moro-oka Y, Ikawa T (1986) J Catal 101:360

    Article  CAS  Google Scholar 

  8. Wolfs MWJ, Batist PhA (1974) J Catal 32:25

    Article  CAS  Google Scholar 

  9. He D-H, Ueda W, Moro-oka Y (1992) Catal Lett 12:35

    Article  CAS  Google Scholar 

  10. Soares APV, Dimitrov LD, Oliveira MCA, Hilaire L, Portela MF, Grasselli RK (2003) Appl Catal A 253:191

    Article  CAS  Google Scholar 

  11. Kung HH (1994) Adv Catal 40:1

    CAS  Google Scholar 

  12. van Oeffelen DAG, van Hooff JHC, Schuit GCA (1985) J Catal 95:84

    Article  Google Scholar 

  13. Jung JC, Kim H, Choi AS, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Song IK (2006) J Mol Catal A 259:166

    Article  CAS  Google Scholar 

  14. Porteal MF (2001) Topics Catal 15:241

    Article  Google Scholar 

  15. Egashira M, Matsuo K, Kagawa S, Seiyama T (1979) J Catal 58:409

    Article  CAS  Google Scholar 

  16. Toledo-Antonio JA, Nava N, Matínez M, Bokhimi X (2002) Appl Catal A 234:137

    Article  CAS  Google Scholar 

  17. López Nieto JM, Concepción P, Dejoz A, Knözinger H, Melo F, Vázquez MI (2000) J Catal 189:147

    Article  CAS  Google Scholar 

  18. Kung HH, Kung MC (1985) Adv Catal 33:159

    CAS  Google Scholar 

  19. Gibson MA, Hightower JW (1976) J Catal 41:431

    Article  CAS  Google Scholar 

  20. Krishnan VV, Suib SL (1999) J Catal 184:305

    Article  CAS  Google Scholar 

  21. Tiwari PN, Alkhazov TG, Adzamov KU, Khanmamedova AK (1989) J Catal 120:278

    Article  CAS  Google Scholar 

  22. Batist PhA, Lippens BC, Schuit GCA (1966) J Catal 5:55

    Article  CAS  Google Scholar 

  23. Grzybowska B, Haber J, Komorek J (1972) J Catal 25:25

    Article  CAS  Google Scholar 

  24. Hoefs EV, Monnier JR, Keulks GW (1979) J Catal 57:331

    Article  CAS  Google Scholar 

  25. Rennard RJ, Kehl WL (1971) J Catal 21:282

    Article  CAS  Google Scholar 

  26. Ueda W, Chen C-L, Asakawa K, Moro-oka Y, Ikawa T (1986) J Catal 101:369

    Article  CAS  Google Scholar 

  27. Lee H, Jung JC, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2007) Catal Commun, doi:10.1016/j.catcom.2007.10.023

  28. Jung JC, Lee H, Kim H, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Kim YS, Song IK (2007) Catal Commun, doi:10.1016/j.catcom.2007.07.031

  29. Jung JC, Kim H, Kim YS, Chung Y-M, Kim TJ, Lee SJ, Oh S-H, Song IK (2007) Appl Catal A 317:244

    Article  CAS  Google Scholar 

  30. Ruckenstein E, Krishnan R, Rai KN (1976) J Catal 45:270

    Article  CAS  Google Scholar 

  31. Schuit GCA (1974) J Less Comm Metals 36:329

    Article  CAS  Google Scholar 

  32. Grasselli RK (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol. 5. Wiley, New York, Chapter 4

  33. Batist PhA, Der Kinderen AHWM, Leeuwnburgh Y, Metz FAMG, Schuit GCA (1968) J Catal 12:45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the Korea Energy Management Corporation (2005-01-0090-3-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.C., Lee, H., Kim, H. et al. Oxidative Dehydrogenation of C4 Raffinate-3 to 1,3-Butadiene in a Dual-bed Reaction System Comprising ZnFe2O4 and Co9Fe3Bi1Mo12O51 Catalysts: A Synergistic Effect of ZnFe2O4 and Co9Fe3Bi1Mo12O51 Catalysts. Catal Lett 123, 239–245 (2008). https://doi.org/10.1007/s10562-008-9413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-008-9413-9

Keywords

Navigation