Skip to main content
Log in

Catalytic Conversions of Polychlorinated Benzenes and Dioxins with Low-chlorine Using V2O5/TiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Chlorinated benzene, especially 1,2-dichlorobenzene (1,2-DCB), has been widely used as one of surrogate compounds of dioxin to find the noble methods to control dioxin. However, the relationship between the catalytic activity of dioxin surrogate compound and dioxin has not been understood quite well. In this work, we used a vanadium based catalyst (V2O5/TiO2) to compare catalytic activity of chlorinated benzenes and dibenzo-p-dioxins with low-chlorine content using the lab-scale system. We investigated the catalytic conversions of low-chlorinated dioxins, [2-monochlorodibenzo-p-dioxin (2-MCDD), 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD)] and polychlorinated benzenes [1,2-DCB, 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HCB)] using a V2O5/TiO2 catalyst to understand quantitative relationship between dioxin and benzene with the chlorination level. The catalytic decomposition of chlorinated aromatic compounds was following 1,2-DCB > 1,2,3,4-TeCB > 2-MCDD > PeCB ≥ 2,3-DCDD > HCB. It might be more reasonable that PeCB or HCB should be used as the dioxin surrogate compound rather than 1,2-DCB. Also, we investigated the effect of both O2 content and space velocity (SV) on the catalytic decomposition of 1,2-DCB in the presence of V2O5/TiO2 catalyst because these factors should be considered significantly in combustion facilities to control various pollutants. The decomposition of 1,2-DCB shows dependency on the SV while the effect of oxygen content on the catalytic decomposition is negligible in the range of 5–20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mhin BJ, Lee JE, Choi W (2002) J Am Chem Soc 124:144–148

    Article  CAS  Google Scholar 

  2. Lee JE, Choi W, Mhin BJ, Balasubramanian K (2004) J Phys Chem A 108:607–614

    Article  CAS  Google Scholar 

  3. Lee JE, Choi W, Mhin BJ (2003) J Phys Chem A 107:2693–2699

    Article  CAS  Google Scholar 

  4. Olie K, Vermeulen PL, Hutzinger O (1977) Chemosphere 8:455–459

    Article  Google Scholar 

  5. Katami T, Yasuhara A, Okuda T, Shibamoto T (2002) Environ Sci Technol 36:1320–1324

    Article  CAS  Google Scholar 

  6. Finocchio E, Busca G, Notaro M (2006) Appl Catal B 62:12–20

    Article  CAS  Google Scholar 

  7. Liljelind P, Unsworth J, Maaskant O, Marklund S (2001) Chemosphere 42:615–623

    Article  CAS  Google Scholar 

  8. Goemans M, Clarysse P, Joannes J, Clercq PD, Lenaerts S, Matthys K, Boels K (2004) Chemosphere 54:1357–1365

    Article  CAS  Google Scholar 

  9. Chung K-S, Jiang Z, Gill B-S, Chung J-S (2002) Appl Catal A 237:81–89

    Article  CAS  Google Scholar 

  10. Cho C-H, Ihm S-K (2002) Environ Sci Technol 36:1600–1606

    Article  CAS  Google Scholar 

  11. Lichtenberger J, Amiridis MD (2004) J Catal 223:296–308

    Article  CAS  Google Scholar 

  12. Lee JE, Choi W, Mhin BJ (2003) Bull Korean Chem Soc 24:792–796

    Article  CAS  Google Scholar 

  13. Lee JE, Choi W, Odde S, Mhin BJ, Balasubramanian K (2005) Chem Phys Lett 410:142–146

    Article  CAS  Google Scholar 

  14. Won D, Corsi RL, Rynes M (2001) Indoor Air 11:246–256

    Article  CAS  Google Scholar 

  15. Shen L, Wania F (2005) J Chem Eng Data 50:742–768

    Article  CAS  Google Scholar 

  16. Steelhammer JC, Wentworth WE (1969) J Chem Phys 51:1802–1814

    Article  CAS  Google Scholar 

  17. Knighton WB, Bognar JA, Grimsrud EP (1995) J Mass Spectrom 30:557–562

    Article  CAS  Google Scholar 

  18. Wiley JR, Chen ECM, Chen ESD, Richardson P, Reed WR, Wentworth WE (1991) J Electroanal Chem Interfac 307:169–182

    Article  CAS  Google Scholar 

  19. Weber R, Sakurai T, Hagenmaier H (1999) Appl Catal B 20:249–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Science and Technology (KIST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsoo Jurng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.E., Jurng, J. Catalytic Conversions of Polychlorinated Benzenes and Dioxins with Low-chlorine Using V2O5/TiO2 . Catal Lett 120, 294–298 (2008). https://doi.org/10.1007/s10562-007-9283-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9283-6

Keywords

Navigation