Skip to main content

Advertisement

Log in

Ethanol Steam Reforming for Hydrogen Production over Bimetallic Pt–Ni/Al2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ethanol steam reforming was studied at 673–823 K over Pt–Ni/δ-Al2O3. Results indicate that bimetallic catalyst is resistant to coke deposition at steam-to-carbon ratios as low as 1.5 and higher ratios are beneficial for both ethanol conversion and hydrogen formation. About 773 K is the optimum since high H2 production rates are accompanied by low CO and CH4 production rates. A power-function rate expression obtained on the basis of intrinsic rates at 673 K gives reaction orders of 1.25 (±0.05) and −0.215 (±0.015) for ethanol and steam, respectively; the apparent activation energy is calculated as 39.3 (±2) kJ mol−1 between 673 and 723 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ralph TR, Hards GA (1998) Chem Ind 9:337

    Google Scholar 

  2. Ralph TR (1999) Plat Met Rev 43:14

    Google Scholar 

  3. Cheekatamarla PK, Finnerty CM (2006) J Power Sources 160:490

    Article  CAS  Google Scholar 

  4. Trimm DL, Önsan ZI (2001) Catal Rev Sci Eng 43:31

    Article  CAS  Google Scholar 

  5. Liguras DK, Goundani K, Verykios XE (2004) J Power Sources 130:30

    Article  CAS  Google Scholar 

  6. Marino F, Boveri M, Baronetti G, Laborde M (2001) Int J Hydrogen Energy 26:665

    Article  CAS  Google Scholar 

  7. Comas J, Marino F, Laborde M, Amadeo N (2004) Chem Eng J 98:61

    Article  CAS  Google Scholar 

  8. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  9. Sun J, Wu F, Qiu X-P, Zhu W-T (2005) Int J Hydrogen Energy 30:437

    Article  CAS  Google Scholar 

  10. Akande A, Aboudheir A, Idem R, Dalai A (2006) Int J Hydrogen Energy 31:1707

    Article  CAS  Google Scholar 

  11. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  12. Vaidya PD, Rodrigues AE (2006) Ind Eng Chem Res 45:6618

    Article  Google Scholar 

  13. Avci AK, Önsan ZI, Trimm DL (2001) Appl Catal A Gen 216:243

    Article  CAS  Google Scholar 

  14. Örücü E, Karakaya M, Avci AK, Önsan ZI (2005) J Chem Technol Biotechnol 80:1103

    Article  Google Scholar 

  15. Ma L, Trimm DL (1996) Appl Catal A Gen 138:265

    Article  CAS  Google Scholar 

  16. Caglayan BS, Avci AK, Önsan ZI, Aksoylu AE (2005) Appl Catal A Gen 280:181

    Article  CAS  Google Scholar 

  17. Avci AK, Trimm DL, Aksoylu AE, Önsan ZI (2004) Appl Catal A Gen 258:235

    Article  CAS  Google Scholar 

  18. Akin AN, Önsan ZI (1997) J Chem Technol Biotechnol 70:304

    Article  CAS  Google Scholar 

  19. Kapteijn FGB, Marin JA, Moulijn JA (1999) Catalytic reaction engineering. In: van Santen RA, van Leeuwen PWNM, Moulijn JA, Averill BA (eds) Catalysis: an integrated approach, Elsevier, Amsterdam, pp 375–430

    Google Scholar 

Download references

Acknowledgments

The financial support for this research was provided by TUBITAK-MAG through project 104M163 and by Boğaziçi University Research Fund through projects BAP-06HA501 and DPT-03K120250. TUBA-GEBIP grant to A.E. Aksoylu is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ilsen Önsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Örücü, E., Gökaliler, F., Aksoylu, A.E. et al. Ethanol Steam Reforming for Hydrogen Production over Bimetallic Pt–Ni/Al2O3 . Catal Lett 120, 198–203 (2008). https://doi.org/10.1007/s10562-007-9269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9269-4

Keywords

Navigation