Skip to main content
Log in

The State and Reactivity of Pt6 Particles in ZSM-5 Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The density functional theory (DFT/B3LYP) calculations were applied to investigate the interaction of a Pt6 particle with the ZSM-5 zeolite framework. The electronic structure of the metal particle is strongly affected by the interaction with basic framework oxygens and acid sites of the zeolite support. Adsorption on basic sites (Eads = 6 kcal/mol) favors the formation of the electron enriched metal cluster. Interaction of the platinum cluster with the acid site characterized by stabilization energy of 47 kcal/mol results in oxidation of the metal particle and suppression of Brønsted acidity of the support. The hypothesis is put forward that the oxidized platinum particle can function as an active site for the alkane isomerisation on platinum supported high silica zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bandiera J, Naccache C, Imelik B (1978) J Chim Phys–Chim Biol 75:406

    CAS  Google Scholar 

  2. Chupin J, Gnep NS, Lacombe S, Guisnet M (2001) Appl Catal A 206:43

    Article  CAS  Google Scholar 

  3. Blomsma E, Martens JA, Jacobs PA (1997) Stud Surf Sci Catal B 105:909

    Google Scholar 

  4. Galperin LB, Bricker JC, Holmgren JR (2003) Appl Catal, A 239:297

    Article  CAS  Google Scholar 

  5. Sugioka M, Tochiyama C, Matsumoto Y, Sado F (1995) Stud Surf Sci Catal 94:544

    CAS  Google Scholar 

  6. Vasina TV, Masloboishchikova OV, Khelkovskaya-Sergeeva EG, Kustov LM, Houzvička JI (2001) Stud Surf Sci Catal 138:93

    CAS  Google Scholar 

  7. Arribas MA, Martinez A (2002) Appl Catal A 230:203

    Article  CAS  Google Scholar 

  8. Noordhoek NJ, Schuring D, de Gauw FJMM, Anderson BG, de Jong AM, de Voigt MJA, van Santen RA (2002) Ind Eng Chem Res 41:1973

    Article  CAS  Google Scholar 

  9. Kuznetsov PN (2003) J Catal 218:2

    Article  CAS  Google Scholar 

  10. Weisz PB, Swegler EW (1957) Science 126:31

    Article  CAS  Google Scholar 

  11. Kuhlmann A, Roessner F, Schwieger W, Gravenhorst O, Selvam T (2004) Catal Today 97:303

    Article  CAS  Google Scholar 

  12. Ono Y (2003) Catal Today 81:3

    Article  CAS  Google Scholar 

  13. Libuda J, Frank M, Sandell A, Andersson S, Brühwiler PA, Bäumer M, Mårtensson N, Freund H-J (1997) Surf Sci 384:106

    Article  CAS  Google Scholar 

  14. Heemeier M, Frank M, Libuda J, Wolter K, Kuhlenbeck H, Bäumer M, Freund H-J (2000) Catal Lett 68:19

    Article  CAS  Google Scholar 

  15. Stakheev AYu, Sachtler WMH (1991) J Chem Soc, Faraday Trans 87:3703

    Article  CAS  Google Scholar 

  16. Blackmond DG, Goodwin JG Jr (1981) J Chem Soc Chem Commun 125

  17. Sachtler WMH, Zhang Z (1993) Adv Catal 39:129

    Article  CAS  Google Scholar 

  18. Vaarkamp M, Miller JT, Modica FS et al. (1993) Stud Surf Sci Catal 75:809

    CAS  Google Scholar 

  19. Zholobenko VL, Lei GD, Carvill BT et al. (1994) J Chem Soc, Faraday Trans 90:233

    Article  CAS  Google Scholar 

  20. Weber RS, Boudart M, Gallezot P (1980) Stud Surf Sci Catal 4:415

    Article  CAS  Google Scholar 

  21. Ramaker DE, Mojet BL, Garriga Oostenbrink MT, Miller JT, Koningsberger DC (1999) Phys Chem Chem Phys 1:2293

    Article  CAS  Google Scholar 

  22. Hammer B, Nørskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  23. Koningsberger DC, Oudenhuijzen MK, Bitter JH, Ramaker DE (2000) Topics Catal 10:167

    Article  CAS  Google Scholar 

  24. Koningsberger DC, Ramaker DE, Miller JT, de Graaf J, Mojet BL (2001) Topics Catal 15:35

    Article  CAS  Google Scholar 

  25. Kubička D, Kumar N, Venäläinen T, Karhu H, Kubičková I, Österholm H, Murzin YuD (2006) J Phys Chem, B 110:4937

    Article  CAS  Google Scholar 

  26. Vayssilov GN, Gates BC, Rösch N (2003) Angew Chem Int Ed 42:1391

    Article  CAS  Google Scholar 

  27. Vayssilov GN, Rösch N (2005) Phys Chem Chem Phys 7:4019

    Article  CAS  Google Scholar 

  28. Treesukol P, Srisuk K, Limtrakul J, Truong TN (2005) J Phys Chem, B 109:11940

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  31. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  32. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612

    Article  CAS  Google Scholar 

  33. Granovsky AA, PC GAMESS version 7.0, http://classic.chem.msu.su/gran/gamess/index.html

  34. Schmidt MW, Baldridge KK, Boatz JA et al. (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  35. NBO 4.M. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Weinhold F (1999) Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  36. Stakheev AY, Kustov LM (1999) Appl Catal, A 188:3

    Article  CAS  Google Scholar 

  37. Blekkan E, Pham-Huu C, Ledoux MJ, Guille J (1994) Ind Eng Chem Res 33:1657

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Mikhailov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhailov, M.N., Kustov, L.M. & Kazansky, V.B. The State and Reactivity of Pt6 Particles in ZSM-5 Zeolite. Catal Lett 120, 8–13 (2008). https://doi.org/10.1007/s10562-007-9245-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9245-z

Keywords

Navigation