Skip to main content
Log in

Effect of the Ratio of Precipitated SiO2 to Binder SiO2 on Iron-based Catalysts for Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of the ratio of precipitated SiO2 to binder SiO2 (Si(P)/Si(B)) on the reduction, carburization and catalytic behavior of precipitated Fe–Cu–K–SiO2 catalysts for Fischer–Tropsch synthesis (FTS) were investigated by N2 physisorption, temperature-programmed reduction/desorption (TPR/TPD) and Mössbauer effect spectroscopy (MES). FTS performances of the catalysts were tested in a continuous stirred tank reactor (CSTR). It is found that the increase of Si(P)/Si(B) ratio (Si(P)/Si(B) = 0/25 ∼ 15/10) decreases the crystallite size of the catalysts, improves the surface basicity, enhances the reduction and carburization of the catalysts, and increases the activity of the catalyst. However, when Si(P)/Si(B) ratio is further increased (Si(P)/Si(B) = 25/0), the catalyst exhibits a restrained reduction and carburization behavior, which may be attributed to the stronger metal–support interaction. Based on the present work, a catalyst with a suitable ratio of Si(P)/Si(B), for example Si(15)/Si(10) displays an optimal FTS performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martínez A, López C, Márquez F, Díaz I (2003) J Catal 220:486

    Article  CAS  Google Scholar 

  2. Zhang C, Yang Y, Teng B, Li T, Zheng H, Xiang H, Li Y (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  3. Dry ME (2001) J chem Technol Biotechnol 77:43

    Article  CAS  Google Scholar 

  4. Wu B, Tian L, Bai L, Zhang Z, Xiang H, Li YW (2004) Catal Commun 5:253

    Article  CAS  Google Scholar 

  5. Jothmurugesan K, Goodwin JG Jr, Gangwal SK, Spivey JJ (2000) Catal Today 58:335

    Article  Google Scholar 

  6. Zhao R, Goodwin JG Jr, Jothmurugesan K, Gangwal SK, Spivey JJ (2001) Ind Eng Chem Res 40:1065

    Article  CAS  Google Scholar 

  7. Sudsakorn K, Goodwin JG Jr, Jothmurugesan K, Adeyiga AA (2001) Ind Eng Chem Res 40:4778

    Article  CAS  Google Scholar 

  8. Pham HN, Viergutz A, Gormley RJ, Datye AK (2000) Powder Technol 110:196

    Article  CAS  Google Scholar 

  9. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Ind Eng Chem Res 29:1588

    Article  CAS  Google Scholar 

  10. Jin Y, Datye AK (2006) J Catal 196:8

    Article  CAS  Google Scholar 

  11. Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW, Xu BF, Yi F (2007) Catal Commun 8:1538

    Article  CAS  Google Scholar 

  12. Zhang CH, Wan HJ, Yang Y, Xiang HW, Li YW (2006) Catal Commun 7:733

    Article  CAS  Google Scholar 

  13. Dlamini H, Motjope T, Joorst G, Stege GT, Mdleleni M (2002) Catal Lett 78:201

    Article  CAS  Google Scholar 

  14. Yang Y, Xiang HW, Tian L, Wang H, Zhang CH, Tao ZC, Xu YY, Zhong B, Li YW (2005) Appl Catal: Gen 284:105

    Article  CAS  Google Scholar 

  15. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  16. Jun KW, Roh HS, Kim KS, Ryu JS, Lee KW (2004) Appl Cata A: Gen 259:221

    Article  CAS  Google Scholar 

  17. Wan HJ, Wu BS, Zhang CH, Teng BT, Tao ZC, Yang Y, Zhu YL, Xiang HW, Li YW (2006) Fuel 85:1371

    Article  CAS  Google Scholar 

  18. Bukur DB, Sivaraj C (2002) Appl Catal A: Gen 231 201

    Article  CAS  Google Scholar 

  19. Wan HJ, Wu BS, Tao ZC, Li TZ, An X, Xiang HW, Li YW (2006) J Mol Catal A 260:255

    Article  CAS  Google Scholar 

  20. Spadaro L, Arena F, Granados ML, Ojeda M, Fierro JLG, Frusteri F (2005) J Catal 234:451

    Article  CAS  Google Scholar 

  21. Robert RG, Jonathan P (1987) J Catal 104:365

    Article  Google Scholar 

  22. Sirmanothan N, Hamdeh HH, Zhang Y, Davis BH (2002) Catal Lett 82:181

    Article  Google Scholar 

  23. Jiang M, Koizumi N, Yamada M (2000) Appl Catal A: Gen 204:49

    Article  CAS  Google Scholar 

  24. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230

    Article  CAS  Google Scholar 

  25. Guczi L, Lázár K (1991) Stud Surf Sci Catal 61:251

    Article  CAS  Google Scholar 

  26. Li S, Meitzner GD, Iglesia E (2001) J Phys Chem B 105:5745

    Google Scholar 

  27. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202

    Article  CAS  Google Scholar 

  28. Sudsakorn K, Goodwin JG, Adeyiga AA (2003) J Catal 213:204

    Article  CAS  Google Scholar 

  29. Mansker LD, Jin Y, Buckur DB, Datye AK (1999) Appl Catal A 186:227

    Google Scholar 

  30. Dry ME, Oosthuizen GJ (1968) J Catal 11:18

    Article  CAS  Google Scholar 

  31. Miller DG, Moskovits M (1988) J Phys Chem 92:6081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial support from the Natural Science Foundation of China (20473111), and the National Outstanding Young Scientists Foundation of China (20625620), respectively. This work is also supported by SYNFUELS CHINA.Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, W., Wu, B., An, X. et al. Effect of the Ratio of Precipitated SiO2 to Binder SiO2 on Iron-based Catalysts for Fischer–Tropsch Synthesis. Catal Lett 119, 353–360 (2007). https://doi.org/10.1007/s10562-007-9244-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9244-0

Keywords

Navigation