Skip to main content
Log in

Influence of calcination procedure on the catalytic property of sulfated zirconia

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Calcination parameters, such as atmosphere, duration and catalyst bed depth have a marked influence on the catalytic and spectroscopic properties of sulfated zirconia. Sulfated zirconia calcined in nitrogen or synthetic airflow, in deep bed, exhibited comparable activity in n-butane isomerization at 373 K, which suggests that oxygen is not necessary for formation of active sites. Catalysts calcined in shallow bed are catalytically inactive. Thus, the bed depth is concluded to be crucial for the formation of active sites. The samples calcined in shallow bed possessed lower sulfate content and the S=O stretching vibration was located at lower frequency. Calcination in the presence of water vapor also led to lower catalytic activity, sulfate content, and BET area. Extended calcination reduced gradually the activity and the sulfate content, which underlines the labile property of the active sites. A new interpretation of the function of the calcination step is proposed and compared with models described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. Song X.M., Sayari A. (1996). Catal. Rev. Sci. Eng. 38:329

    CAS  Google Scholar 

  2. Arata K. (1996). Appl. Catal. A Gen. 146:3

    Article  CAS  Google Scholar 

  3. Cheung T.-K., Gates B.C. (1998). Top. Catal. 6:41

    Article  CAS  Google Scholar 

  4. Adeeva V., Liu H., Xu B., Sachtler W.M.H. (1998). Top. Catal. 6:61

    Article  CAS  Google Scholar 

  5. Fărcaşiu D., Li J.Q. (1998). Appl. Catal. A Gen. 175:1

    Article  Google Scholar 

  6. Hong Z., Fogash K. B., Dumesic J. A. (1999). Catal. Today 51:269

    Article  CAS  Google Scholar 

  7. Yadav G., Nair J. J. (1999). Micropor. Mesopor. Mater. 33:1

    Article  CAS  Google Scholar 

  8. Yamaguchi T. (2001). Appl. Catal. A Gen. 222:237

    Article  CAS  Google Scholar 

  9. K. Tanabe, M. Itoh, K. Morishige and H. Hattori (1976), in: Preparation of Catalysts, eds. B. Delmon, P. Jacobs and G. Poncelet (Elsevier, Amsterdam) p. 65.

  10. Yamaguchi T., Tanabe K., Kung Y. C. (1986). Mater. Chem. Phys. 16:67

    Article  Google Scholar 

  11. Sohn J.R., Kim H.W. (1989). J. Mol. Catal. 52:361

    Article  CAS  Google Scholar 

  12. Tran M.-T., Gnep N.S., Szabo G., Guisnet M. (1998). Appl. Catal. A Gen. 171:207

    Article  CAS  Google Scholar 

  13. Morterra C., Cerrato G., Signoretto M. (1996). Catal. Lett. 41:101

    Article  CAS  Google Scholar 

  14. Morterra C., Cerrato G., Meligrana G., Signoretto M., Pinna F. Strukul G. (2001). Catal. Lett. 73:113

    Article  CAS  Google Scholar 

  15. Li X., Nagaoka K., Olindo R., Lercher J.A. (2006). J. Catal. 238:39

    Article  CAS  Google Scholar 

  16. Li X., Nagaoka K., Simon L.J., Olindo R., Lercher J.A., Hofmann A., Sauer J.A.(2005). J. Am. Chem. Soc. 127:16159

    Article  CAS  Google Scholar 

  17. Hahn A. H. P., Jentoft R. E., Ressler T., Weinberg G., Schlögl R., Jentoft F. C. (2005). J. Catal. 236:324

    Article  CAS  Google Scholar 

  18. Canton P., Olindo R., Pinna F., Strukul G., Riello P., Meneghetti M., Cerrato G., Morterra C., Benedetti A. (2001). Chem. Mater. 13:1634

    Article  CAS  Google Scholar 

  19. Chokkaram S., Srinivasan R., Milburn D.R., Davis B.H. (1994). J. Colloid Interface Sci. 165:160

    Article  CAS  Google Scholar 

  20. Srinivasan R., Keogh R. A., Milburn D. R., Davis B. H. (1995). J. Catal. 153:123

    Article  CAS  Google Scholar 

  21. Srinivasan R., Davis B. H. (1993). J. Colloid Interface Sci. 156:400

    Article  CAS  Google Scholar 

  22. Comelli R. A., Vera C. R., Parera J. M. (1995). J. Catal. 15:96

    Article  Google Scholar 

  23. Chen F.R., Coudurier G., Védrine J.F. (1993). J. Catal. 143:616

    Article  CAS  Google Scholar 

  24. Hertl W. (1989). Langmuir 5:96

    Article  CAS  Google Scholar 

  25. Tsyganenko A.A., Filimonov V.N. (1973). J. Mol. Struct. 19:579

    Article  CAS  Google Scholar 

  26. Yamaguchi T., Jin T., Tanabe K. (1986). J. Phys. Chem. 90:3148

    Article  CAS  Google Scholar 

  27. Waqif M., Bachelier J., Saur O., Lavalley J. C. (1992). J. Mol. Catal. 72:127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. We thank Prof. Helmut Papp and Dr. Friederike Jentoft for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. Lercher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Nagaoka, K., Simon, L.J. et al. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catal Lett 113, 34–40 (2007). https://doi.org/10.1007/s10562-006-9005-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-9005-5

Keywords

Navigation