Skip to main content
Log in

Influence of Calcination Temperature on the Stability of Fluorinated Nanosized HZSM-5 in the Methylation of Biphenyl

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A series of fluorinated nanosized HZSM-5 catalysts were prepared by impregnating the zeolite with NH4F solution. The samples were characterized by XRD, XRF, FTIR-Py, TPD, 27Al and 29Si MAS-NMR. The effect of calcination temperature on the structure and acidity was studied in the range of 400–500 °C. When the calcination temperature increases, more framework aluminum atoms are removed due to the fluorination. As a result, the number of acid sites and the acid strength decrease, but the ratio of the total Brönsted acid sites to the total Lewis acid sites (BT/LT) increases. The fluorinated nanosized HZSM-5 catalysts exhibit better stability in the methylation of biphenyl (BP) with methanol. Moreover, the stability increases with the increase of the calcination temperature. When the fluorinated nanosized HZSM-5 is calcined at 500 °C, the conversion of BP can keep at about 10% for 50 h. The enhancement of stability may be due to the decrease of the acid strength and the increase of the ratio of BT/LT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Song, J.M. Graces and Y. Sugi, Shape-selective Catalysis. Chemicals Synthesis and Hydrocarbon Processing, ACS Symp. Ser., Vol. 738(Am. Chem. Soc., Washington, 1999, DC) pp. 248

  2. C. Song S. Kirby (1994) Micropor. Mater. 2 467 Occurrence Handle1:CAS:528:DyaK2cXntVSmtb4%3D

    CAS  Google Scholar 

  3. A.D. Schmitz C. Song (1996) Catal. Today 31 19 Occurrence Handle1:CAS:528:DyaK28Xltleit7g%3D

    CAS  Google Scholar 

  4. Y. Sugi M. Toba (1994) Catal. Today 19 187 Occurrence Handle10.1016/0920-5861(94)85007-0 Occurrence Handle1:CAS:528:DyaK2cXislensbY%3D

    Article  CAS  Google Scholar 

  5. G.S. Lee J.M. Garces J. Maj (1990) J. Catal. Sci. Technol. 1 385

    Google Scholar 

  6. S. Tawada Y. Sugi Y. Kubota (2000) Catal. Today 60 243 Occurrence Handle10.1016/S0920-5861(00)00341-2 Occurrence Handle1:CAS:528:DC%2BD3cXlsFGrsLs%3D

    Article  CAS  Google Scholar 

  7. J.P. Shen L. Sun C. Song (2000) Catal. Lett. 65 147 Occurrence Handle10.1023/A:1019052802061 Occurrence Handle1:CAS:528:DC%2BD3cXisFWgsbc%3D

    Article  CAS  Google Scholar 

  8. J.P. Shen L. Sun C. Song (2001) Stud. Surf. Sci. Catal. 135 157

    Google Scholar 

  9. X.W. Guo J.P. Shen L. Sun C. Song X.S. Wang (2003) Catal. Lett. 87 25 Occurrence Handle1:CAS:528:DC%2BD3sXitFSjsLY%3D

    CAS  Google Scholar 

  10. S. Dubuis R. Doepper A. Renken (1999) Stud. Surf. Sci. Catal. 122 359 Occurrence Handle1:CAS:528:DyaK1MXjsFaktLk%3D

    CAS  Google Scholar 

  11. X.W. Guo J.P. Shen L. Sun C. Song X.S. Wang (2003) Catal. Lett. 87 159 Occurrence Handle1:CAS:528:DC%2BD3sXjtFeltbc%3D

    CAS  Google Scholar 

  12. N.A. Sánchez J.M. Saniger J.B. Caillerie A.L. Blumenfeld J.J. Fripiat (2001) J. Catal. 201 80

    Google Scholar 

  13. R. LeVan Mao T.S. Le M. Fairbairn A. Muntasar S. Xiao G. Denes (1999) Appl. Catal. A: Gen 185 41

    Google Scholar 

  14. S. Kowalak E. Szymkowiak M. Laniecki (1999) J. Fluorine Chem. 93 175 Occurrence Handle1:CAS:528:DyaK1MXht1SnsQ%3D%3D

    CAS  Google Scholar 

  15. R.B. Borade A. Clearfield (1995) J. Chem. Soc. Faraday Trans. 91 539 Occurrence Handle10.1039/ft9959100539 Occurrence Handle1:CAS:528:DyaK2MXjsVyhtLw%3D

    Article  CAS  Google Scholar 

  16. F. Kollmer H. Hausmann W.F. Hölderich (2004) J. Catal. 227 408 Occurrence Handle1:CAS:528:DC%2BD2cXotFGntLw%3D

    CAS  Google Scholar 

  17. F. Kollmer H. Hausmann W.F. Hölderich (2004) J. Catal. 227 398 Occurrence Handle1:CAS:528:DC%2BD2cXotFGntL8%3D

    CAS  Google Scholar 

  18. M. Sugimoto H. Katsuno K. Takatsu N. Kawata (1987) Zeolites 7 503 Occurrence Handle10.1016/0144-2449(87)90087-X Occurrence Handle1:CAS:528:DyaL1cXkslaqtrg%3D

    Article  CAS  Google Scholar 

  19. M. Yamamura K. Chaki T. Wakatsuki K. Fujimoto (1994) Zeolites 14 643 Occurrence Handle10.1016/0144-2449(94)90121-X Occurrence Handle1:CAS:528:DyaK2cXntVemsrs%3D

    Article  CAS  Google Scholar 

  20. X. Wang X. Wang X. Guo (2000) CN 1 240 193

    Google Scholar 

  21. H. Kee V. Rhee Udaya S. Rao M. John Stencel (1983) Zeolites 3 337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwen Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Guo, X., Zhang, C. et al. Influence of Calcination Temperature on the Stability of Fluorinated Nanosized HZSM-5 in the Methylation of Biphenyl. Catal Lett 107, 209–214 (2006). https://doi.org/10.1007/s10562-006-0004-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0004-3

Keywords

Navigation