Skip to main content
Log in

Partial Oxidation of Methanol Over Highly Dispersed Vanadia Supported on Silica SBA-15

  • Published:
Catalysis Letters Aims and scope Submit manuscript

The partial oxidation of methanol to formaldehyde (FA) was studied over highly dispersed vanadia supported on mesoporous silica SBA-15 (VO x /SBA-15). VO x /SBA-15 catalysts were prepared by a novel grafting/ion-exchange method and characterized using UV–VIS- and Raman spectroscopy. The resulting surface vanadium oxide species (0–2.3 V/nm2), grafted on the inner pores of the SBA-15 silica matrix, consist of tetrahedrally coordinated monomeric and polymeric vanadia. The VO x /SBA-15 catalysts are active and highly selective for the production of FA between 300 and 400 °C. Comparison of the reactivity results with literature data reveals that a better catalytic performance can be obtained over vanadia supported on mesoporous silica in comparison with conventional silica samples with the same vanadium loading. Raman characterization of the catalyst after reaction at high conversion indicates that dispersed vanadia partly agglomerates into vanadia crystallites during methanol oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.Y. Zhao J.L. Feng Q.S. Huo N. Melosh G.H. Fredrickson B.F. Chmelka G.D. Stucky (1998) Science 279 548

    Google Scholar 

  2. D. Trong On D. Desplantier-Giscard C. Danumah S. Kaliaguine (2001) Appl. Cat. A 222 299

    Google Scholar 

  3. K. Cassiers T. Linssen M. Matthieu M. Benjelloun K. Schrijnemakers P. Poort ParticleVan der P. Cool E.F. Vansant (2002) Chem. Mater. 14 2317

    Google Scholar 

  4. H.H. Lopez A. Martinez (2002) Catal. Lett. 83 37

    Google Scholar 

  5. (a) Y.-M. Liu, Y. Cao, K.-K. Zhu, S.-R. Yan, W.-L. Dai, H.-Y. and He, K.-N. Fan, Chem. Commun. (2002) 2832. (b) Y.-M. Liu, Y. Cao, S.-R. Yan, W.-L. Dai and K.-N. Fan, Catal. Lett. 88 (2003) 61. (c) Y.-M. Liu, Y. Cao, N. Li, W.-L. Feng, W.-L. Dai, S.-R. Yan, H.-Y. He and K.-N. Fan, J. Catal. 224 (2005) 417.

  6. G. Deo I.E. Wachs J. Haber (1994) Crit. Rev. Surf. Chem. 4 141

    Google Scholar 

  7. C.R. Dias M.F. Portela G.C. Bond (1995) J. Catal. 157 344

    Google Scholar 

  8. G.C. Bond S.F. Tahir (1991) Appl. Catal. 71 1

    Google Scholar 

  9. E.T.V. Vogt A. Boot A.J. Dillen Particlevan J.W. Geus F.J.J.G. Janssen F.M.G. Kerkhof Particlevan der (1988) J. Catal. 114 313

    Google Scholar 

  10. M. Baltes P. Voort ParticleVan der O. Collart E.F. Vansant (1998) J. Porous Mater. 5 357

    Google Scholar 

  11. G. Deo I.E. Wachs (1994) J. Catal. 146 323

    Google Scholar 

  12. P. Voort ParticleVan der M. Baltes M.G. White B.F. Vansant (1997) Interf. Sci. 5 209

    Google Scholar 

  13. M. Baltes K. Cassiers P. Voort ParticleVan der B.M. Weckhuysen R.A. Schoonheydt E.F. Vansant (2001) J. Catal. 197 160

    Google Scholar 

  14. C. Coperet M. Chabanas R.P. Saint-Arroman J.-M. Basset (2003) Angew. Chem. 42 15

    Google Scholar 

  15. K.L. Fudjala T.D. Tilley (2003) J. Catal. 216 265

    Google Scholar 

  16. K. Zhu, Z. Ma, Y. Zou and W. Zhou, T. Chen and H. He, Chem. Commun. (2001) 2552

  17. W.A. Carvalho M. Wallau U. Schuchardt (1999) J. Mol. Catal. A 144 91

    Google Scholar 

  18. P. Voort ParticleVan der M. Baltes E.F. Vansant (2001) Catal. Today 68 119

    Google Scholar 

  19. C. Hess J.D. Hoefelmeyer T.D. Tilley (2004) J. Phys. Chem. B 108 9703

    Google Scholar 

  20. K. Zhu B. Yue S.-H. Xie S.-Y. Zhang B. Zhang S.-L. Jin H.-Y. He (2004) Chin. J. Chem. 22 33

    Google Scholar 

  21. P. Roman A. Aranzabe A. Luque J.M. Gutierrez-Zorilla (1991) Mat. Res. Bull. 26 731

    Google Scholar 

  22. M. Nabavi F. Taulelle C. Sanchez M. Verdaguer (1990) J. Phys. Chem. Solids 51 1375

    Google Scholar 

  23. (a) D.S.H. Sam, V. Soenen and J.C. Volta, J. Catal. 123 (1990) 417. (b) G. Busca, G. Ricchiardi, D.S.H. Sam and J.C. Volta, J. Chem. Soc. Faraday Trans. 90 (1994) 1161

  24. N. Krishnamachari C. Calvo (1971) Can. J. Chem. 49 1629

    Google Scholar 

  25. (a) M. Schraml-Marth, A. Wokaun, M. Pohl and H.L. Krauss, J. Chem. Soc. Faraday Trans. 87 (1991) 2635. (b) U. Scharf, M. Schraml-Marth, A. Wokaun and A. Baiker, J. Chem. Soc. Faraday Trans. 87 (1991) 3299

  26. S. Xie E. Iglesia A.T. Bell (2000) Langmuir 16 7162

    Google Scholar 

  27. X. Gao S.R. Bare B. Weckhuysen I.E. Wachs (1998) J. Phys. Chem. B 102 10842

    Google Scholar 

  28. N. Das H. Eckert H. Hu I.E. Wachs J.F. Walzer F.J. Feher (1993) J. Phys. Chem. 97 8240

    Google Scholar 

  29. G.T. Went S.T. Oyama A.T. Bell (1990) J. Phys. Chem. 94 4240

    Google Scholar 

  30. N. Magg B. Immaraporn J.B. Giorgi T. Schroeder M. Bäumer J. Döbler Z. Wu E. Kondratenko M. Cherian M. Baerns P.C. Stair J. Sauer H.-J. Freund (2004) J. Catal. 226 88

    Google Scholar 

  31. O.L.J. Gijzeman J.N.J. Lingen Particlevan J.H. Lenthe Particlevan S.J. Tinnemanns D.E. Keller B. Weckhuysen (2004) Chem. Phys. Lett. 397 277

    Google Scholar 

  32. The UV–VIS spectra shown in figure 1 have been deconvoluted. As a result, the spectrum of a sample with vanadium loading of 7.2 wt% can be described by three bands with absorption maxima at 250, 292 and 362 nm, respectively, A more detailed description is given elsewhere [19]

  33. F. Marumo M. Isobe S. Iwai Y. Kondo (1974) Acta Crystallogr. B 30 1628

    Google Scholar 

  34. H.T. Evans, Krystallogr Z. 114 (1960) 257

  35. P. McMillan (1986) Am. Mineral. 69 622

    Google Scholar 

  36. (a) D.R. Tallant, B.C. Bunker, C.J. Brinker and CA. Balfe, Mater. Res. Soc. Symp. Proc. 73 (1986) 261. (b) R.H. Stolen and G.E. Walrafen, J. Chem. Phys. 64 (1976) 2623. (c) B.C. Brinker, D.R. Tallant, E.P. Roth and C.S. Ashley, Mater. Res. Soc. Symp. Proc. 61 (1986) 387

  37. Vanadia was deposited at the colder parts of the reactor during catalytic runs at lower temperatures. This is probably due to methanol-mediated volatilization of surface vanadium oxide. A similar behavior has been reported previously [11].

  38. M. Seman J.N. Kondo K. Domen R. Radhakrishnan S.T. Oyama (2002) J. Phys. Chem. B 106 12965

    Google Scholar 

  39. Ultrapure SBA-15 was synthesized according to the literature [1], but the reagents used were 99.999% TEOS, 20% doubly distilled HCl and ultrapure H2O

  40. J. Kijenski A. Baiker M. Glinski P. Dollenmeier A. Wokaun (1986) J. Catal. 101 1

    Google Scholar 

  41. Spectra b (c) and d (e) were obtained after methanol oxidation within 200–240 °C (400–460 °C) for ~14 h (~10 h). Starting at 200 °C (400 °C), the temperature was kept constant for 200 min and subsequently increased by 30 °C (30 °C). It was kept constant for 200 min and then increased by 10 °C (30 °C). After the final temperature had been reached, it was kept constant for the residual duration of the experiment

  42. J.-M. Jehng H. Hu X. Gao I.E. Wachs (1996) Catal. Today 28 335

    Google Scholar 

  43. T. Feng J.M. Vohs (2005) J. Phys. Chem. B 109 2120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, C., Drake, I.J., Hoefelmeyer, J.D. et al. Partial Oxidation of Methanol Over Highly Dispersed Vanadia Supported on Silica SBA-15. Catal Lett 105, 1–8 (2005). https://doi.org/10.1007/s10562-005-7997-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-005-7997-x

Keywords

Navigation